Abstract
Skin barrier dysfunction, a defining feature of atopic dermatitis (AD), arises from multiple interacting systems. In AD, skin inflammation is caused by host–environment interactions involving keratinocytes as well as tissue-resident immune cells such as type 2 innate lymphoid cells, basophils, mast cells, and T helper type 2 cells, which produce type 2 cytokines, including IL-4, IL-5, IL-13, and IL-31. Type 2 inflammation broadly impacts the expression of genes relevant for barrier function, such as intracellular structural proteins, extracellular lipids, and junctional proteins, and enhances Staphylococcus aureus skin colonization. Systemic anti‒type 2 inflammation therapies may improve dysfunctional skin barrier in AD.
Abbreviations: AD, atopic dermatitis; AMP, antimicrobial peptide; CLDN, claudin; FFA, free fatty acid; hBD, human β-defensin; ILC2, type 2 innate lymphoid cell; Jaki, Jak inhibitor; K, keratin; KC, keratinocyte; MMP, matrix metalloproteinase; NMF, natural moisturizing factor; PAR, protease-activated receptor; PDE-4, phosphodiesterase-4; SC, stratum corneum; SG, stratum granulosum; TCI, topical calcineurin inhibitor; TCS, topical corticosteroid; TEWL, transepidermal water loss; Th, T helper; TJ, tight junction; TLR, toll-like receptor; TNF-α, tumor necrosis factor alpha; TYK, tyrosine kinase; ZO, zona occludens
Introduction
Atopic dermatitis (AD) is a chronic pruritic inflammatory skin disease, whose pathogenesis is mediated by interactions between skin barrier impairment and an abnormal immune response featuring enhanced type 2 inflammation (Figure 1). Interactions between keratinocytes (KCs), innate immune cells (e.g., type 2 innate lymphoid cells [ILC2s], dendritic cells, mast cells, basophils, and eosinophils), adaptive immune cells (T and B cells), and an altered epidermal microbiome (with reduction of microbial diversity and predominance of Staphylococcus aureus) all contribute to AD pathogenesis (De Benedetto et al., 2015; Dillon et al., 2004; Gittler et al., 2012; Gschwandtner et al., 2013; Jarrett et al., 2016; Kim et al., 2014; Kong et al., 2012; Mashiko et al., 2017; Onoue et al., 2009; Oyoshi et al., 2010; Sokol et al., 2008; Sonkoly et al., 2006).
Figure 1.
Type 2 inflammation: primary immune cells, key cytokines and alarmins, exogenous targets, and representative diseases. AD is a predominantly type 2 inflammatory disease. Other type 2 allergic diseases include allergic rhinitis, asthma, CRSwNP, eosinophilic esophagitis, and food allergy. 1IL-25 is also known as IL-17E. AD, atopic dermatitis; CRSwNP, chronic rhinosinusitis with nasal polyps; ILC, innate lymphoid cell; TFH, T-follicular helper; Th, T helper.
Type 2 inflammation is characterized by overexpression of the cytokines IL-4, IL-5, IL-13, and IL-31 (Giustizieri et al., 2001; Gros et al., 2009; Hamid et al., 1996, 1994; Hardman et al., 2017; Kim et al., 2014; Leyva-Castillo et al., 2013; Mashiko et al., 2017; Neill et al., 2010; Oyoshi et al., 2010; Pivarcsi et al., 2004; Schmitz et al., 2005; Sokol et al., 2008; Stott et al., 2013). These cytokines, particularly IL-4 and IL-13, act on both structural and immune cells (Figure 1). IL-4 and IL-13 signaling serves as a key initiating pathway for type 2 inflammatory diseases, whereas IL-4 amplifies the allergic inflammation observed in type 2 inflammatory diseases, including AD, asthma, allergic rhinitis, food allergy, and eosinophilic esophagitis (Davidson et al., 2019; Irvine and Mina-Osorio, 2019; Izuhara et al., 2002).
The functions of IL-4 and IL-13 overlap but are not identical (Figure 2). IL-4 and, to a lesser extent, IL-13 regulate class switching and IgE production by plasma cells (Gascan et al., 1991; Punnonen et al., 1993). IL-4 but not IL-13 promotes the differentiation of T helper (Th) cells from Th0 to Th2 cells (Gandhi et al., 2016; Paul, 2015; Swain et al., 1990). Both IL-4 and IL-13 induce different transcriptional changes in mast cells (McLeod et al., 2015; Nilsson and Nilsson, 1995) and are associated with fibrotic processes (Bhogal and Bona, 2008; Elbe-Bürger et al., 2002; Fichtner-Feigl et al., 2006; Gillery et al., 1992; Jessup et al., 2008; Kaviratne et al., 2004; Kolodsick et al., 2004; Oh et al., 2011; Oriente et al., 2000; Postlethwaite et al., 1992; Rankin et al., 2010; Zheng et al., 2009). They also activate Th0 cells, recruit inflammatory effector cells, downregulate the expression of FLG and other skin barrier proteins, and, at least in murine models, favor S. aureus colonization in inflamed skin (Bao and Reinhart, 2015; Cho et al., 2001a; Le Floc’h et al., 2020; Leyva-Castillo et al., 2020; Liang et al., 2011; Mitamura et al., 2018a, 2018b; Swain et al., 1990). In addition, IL-4 and IL-13 directly act on sensory neurons, increasing their sensitivity to several pruritogens and contributing to the perpetuation of chronic itch in AD (Oetjen et al., 2017).
Figure 2.
IL-4 and IL-13 have overlapping but not identical functions; for example, both mediate inflammation and barrier dysfunction through immunologic and structural changes, both enhance pruritogenic pathways, and both promote Staphylococcus aureus colonization in AD. However, IL-4 but not IL-13 promotes the differentiation of Th cells from Th0 to Th2 cells (Berdyshev et al., 2018; Campion et al., 2019; Chen et al., 2004; Danso et al., 2014; Finkelman et al., 1988; Gandhi et al., 2016; Goleva et al., 2019; Guttman-Yassky et al., 2019a; Hamilton et al., 2021, 2014; Howell et al., 2008; Jessup et al., 2008; Kim et al., 2008; Paul, 2015; Suárez-Fariñas et al., 2013; Swain et al., 1990; Zheng et al., 2009). AD, atopic dermatitis; DC, dendritic cell; ILC, innate lymphoid cell; Th, T helper.
In this paper, we review the role of the components relevant to a functional skin barrier and highlight how skin barrier dysfunction promotes the development of type 2 inflammation and how type 2 inflammation, in turn, affects skin barrier dysfunction.
The Skin Barrier
The epidermis is the only epithelial surface with two barrier structures: the stratum corneum (SC), which is unique to the skin, and tight junctions (TJs), which are present in other epithelia as well (Elias, 1988; Kubo et al., 2009; Michaels et al., 1975; Yoshida et al., 2014, 2013). Both the SC and the TJs limit penetration of and reaction to microbes, allergens/irritants, and toxins as well as prevent transepidermal water loss (TEWL).
SC
Corneocytes
The SC, the outer layer of the epidermis, is composed of flattened, anucleated KCs (corneocytes) surrounded by a complex lipid-enriched extracellular matrix (Figure 3). Corneocytes are analogous to bricks and lipids to mortar in the original brick and mortar model of the SC (Elias, 1988; Michaels et al., 1975). This concept has since evolved into a dynamic model in which lipid composition and alignment of the SC allow for adaptation to external factors and are altered in diseases such as AD (Pilgram et al., 2001; van Smeden and Bouwstra, 2016).
Figure 3.
The key components of skin showing the differences between normal healthy skin (left side) and AD skin (right side), including the microbiome, corneocytes, antimicrobial peptides, lipids, NMFs, and tight junctions. In the brick and mortar model, the bricks represent corneocytes, and the mortar represents the extracellular lipids and other extracellular matrix components. In the confocal images, green staining represents ZO-1 and CLDN-1, and white represents cell nuclei. Confocal images from AD skin (on the right) show dramatically reduced green staining demonstrating reduced ZO-1 and CLDN-1, compared with normal skin (on the left). 1Confocal images were adapted with permission from Takahashi et al. (2019) (http://creativecommons.org/licenses/by/4.0; modified), courtesy of Takaharu Okada at RIKEN IMS (Yokohama, Japan). 2Confocal images were provided with permission from De Benedetto et al. (2011a). AD, atopic dermatitis; CLDN, claudin; KLK, kallikrein; MMP, matrix metalloproteinase; NMF, natural moisturizing factor; SB, stratum basale; SC, stratum corneum; SG, stratum granulosum; SS, stratum spinosum; ZO, zona occludens.
SC protein components
Keratins have both structural and regulatory functions in the epidermis. The more than 20 different epithelial keratins form specific keratin pairs composed of type I (lower molecular weight and acidic) and type II (neutral basic) components (Moll et al., 2008; Schweizer et al., 2006; Szeverenyi et al., 2008). Keratin pairs crosslink with other keratin pairs to form keratin filaments, which interact with other proteins and the cell membrane to provide structural stability and flexibility to KCs (Candi et al., 1998; Lee and Coulombe, 2009; Steinert and Marekov, 1995). In the epidermis, keratin (K) 5 and K14 predominate in the stratum basale, whereas K1 and K10 predominate in the stratum spinosum and higher layers―the change from one pair type to another reflects KC differentiation (Fuchs and Green, 1980; Moll et al., 1982; Reichelt et al., 2001). In contrast, K6, K16, and K17 are associated with the repair of an injured epidermis and are upregulated in inflammatory disorders of the skin, such as AD and psoriasis (Fu et al., 2014; Kumar et al., 2015; Lessard et al., 2013; Leung et al., 2020; Moll et al., 2008; Roth et al., 2012).
KCs undergo cornification, marking their differentiation into corneocytes; the cells become compact owing to keratin crosslinking, and keratins and other proteins form a cornified envelope that lines the cell membrane (Bowden et al., 1984; Candi et al., 1998; Eckert et al., 2005). During cornification, keratin filaments cross-link to FLG and other proteins lining the cell membrane (e.g., involucrin and loricrin) (Candi et al., 1998; Roth et al., 2012; Steinert and Marekov, 1995). Keratin filaments also connect to cell–cell adhesion structures, such as desmosomes, stabilizing connections between KCs (Homberg and Magin, 2014; Kouklis et al., 1994; Seltmann et al., 2013). Under normal conditions, keratin-filled corneocytes swell and expand with exposure to water, which softens the keratin and allows the SC to bend and stretch (Bouwstra et al., 2008, 2003).
Keratins have multiple regulatory functions. For example, K1 downregulates the expression and secretion of the inflammatory cytokines IL-18, IL-33, and TSLP as well as damage-associated molecular patterns such as S100A8 and S100A9 (Roth et al., 2012). K16 downregulates the expression of damage-associated molecular patterns and other inflammatory molecules involved in the innate immune response to skin barrier disruption (Lessard et al., 2013).
Keratin expression is dysregulated in AD (Guttman-Yassky et al., 2019a). K16 expression is increased in suprabasal epidermis in AD, corresponding with abnormal KC proliferation (Guttman-Yassky et al., 2019a; Suárez-Fariñas et al., 2011). In contrast, K1 and K10 expression is downregulated by IL-4 and IL-13 in AD lesional skin versus in healthy controls, which might contribute to the SC barrier defects seen in patients with AD and the release of proinflammatory and type 2–promoting alarmins (Dai et al., 2021; Imai et al., 2013; Totsuka et al., 2017).
FLG is a key structural protein in KCs. Its precursor pro-FLG is expressed in the stratum granulosum (SG) layer and is the major component of keratohyalin granules (Presland et al., 1997; Resing et al., 1995). During terminal differentiation, pro-FLG is dephosphorylated and cleaved to generate multiple FLG monomers (Presland et al., 1997; Resing et al., 1995; Sandilands et al., 2009).
FLG has multiple functions. It binds to keratin filaments in the KC cytoskeleton, forming an FLG–keratohyalin complex that cross-links to the cornified envelope, transforming KCs into arguably impervious corneocytes (i.e., “bricks”) (Eckhart et al., 2013; Presland et al., 1997; Sandilands et al., 2009). FLG degradation by the protease caspase-14 in outer SC layers produces natural moisturizing factors (NMFs) (see below) (Hoste et al., 2011). FLG and NMFs are controlled in a finely balanced process of production, proteolysis, and inhibition that is crucial to skin barrier structure; hydration; and function, including pH regulation, microbial ecology, and possibly even UV protection (Barker et al., 2007; Denecker et al., 2007; Kawasaki et al., 2012; Palmer et al., 2006; Sandilands et al., 2007; Smith et al., 2006).
Reduced expression and loss-of-function mutations of FLG are common in AD (Barker et al., 2007; Baurecht et al., 2007; Nomura et al., 2008; Palmer et al., 2006; Weidinger et al., 2008, 2007). Prevalence and types of FLG loss-of-function mutations vary among populations, with a very wide variation being reported for patients with AD (Barker et al., 2007; Baurecht et al., 2007; Brown and McLean, 2012; Nomura et al., 2008; Palmer et al., 2006; Weidinger et al., 2008, 2007). FLG loss-of-function mutations are associated with more severe AD (Brown and McLean, 2012, 2009; Brown et al., 2008a; Margolis et al., 2012; Weidinger et al., 2007), earlier onset of AD, greater risk of allergen sensitization and other atopic disorders (Brown et al., 2011; Palmer et al., 2007), and higher incidence of eczema herpeticum (Gao et al., 2009). FLG loss-of-function mutations are also associated with mild AD, but the association is weaker than that seen for severe disease (Brown et al., 2008b).
Notably, FLG expression may be reduced in patients with AD without FLG mutations. Type 2 inflammatory mediators, including IL-4, IL-13, IL-31, IL-33, and TSLP, reduce FLG expression (Howell et al., 2009, 2007; Kim et al., 2015; Sehra et al., 2010; Seltmann et al., 2015). This has also been observed in skin inflammation mediated by Th17 (IL-17), Th22 (IL-22), and Th1 (IL-1α, IL-1β, and TNF-α) (Archer et al., 2019; Boniface et al., 2005; Danso et al., 2014; Gutowska-Owsiak et al., 2012, 2011; Kezic et al., 2012; Oyoshi et al., 2009; Tan et al., 2017). Repetitive scratching, detergent use, low humidity, exogenous or endogenous proteases, air pollution, and topical and oral corticosteroids can also reduce FLG expression (Danby et al., 2014; Goleva et al., 2019; Sheu et al., 1997, 1991; Thyssen and Kezic, 2014). FLG has multiple repeats (typically 10‒12) within the locus (Brown et al., 2012). Copy number variants are associated with AD in some but not all populations. For example, in a cohort study in Ireland, reduced copy numbers were more frequent in patients with AD than in normal controls (Brown et al., 2012), whereas studies in other populations did not find any association between copy number variation and the risk of AD (Fernandez et al., 2017; Fulton et al., 2022).
FLG deficiency is associated with reductions in SC structure, hydration, antimicrobial function, and epithelial buffering capacity in AD and increases in skin pH, percutaneous absorption, and protease activity (Brauweiler et al., 2013; Flohr et al., 2010; Kawasaki et al., 2012; Kezic et al., 2008; Thyssen and Kezic, 2014; Vávrová et al., 2014). FLG-knockdown KCs have reduced levels of K10, TJ proteins (zona occludens [ZO]-1, claudin [CLDN]-1, and occludin), and human β-defensin (hBD)-2; and increased cysteine proteases, which can degrade TJ proteins (Hönzke et al., 2016; Wang et al., 2017). Reduction in FLG expression reduces the levels of FLG metabolites such as NMFs. This results in an increase in SC pH, which activates serine proteases (Elias et al., 2008; Goleva et al., 2019; Wang et al., 2017) and induces the expression of the proinflammatory cytokines, IL-1α, IL-1β, and TSLP (Hönzke et al., 2016; Kezic et al., 2012; Nylander-Lundqvist and Egelrud, 1997; Wood et al., 1996). Reduced FLG expression is also linked to increased levels of arachidonic acid and its metabolite 12-hydroxy-eicosatetraenoic acid in KCs, leading to increased inflammation and impairing late epidermal differentiation (Blunder et al., 2017).
The manifestations of FLG-deficient skin are much more dramatic when combined with the biological actions of IL-4 and IL-13. For example, in an in vitro study, IL-4 and IL-13 stimulation induced spongiosis and increased epidermal thickening, skin pH, and permeability in both normal and FLG-deficient skin equivalents (Hönzke et al., 2016). However, in FLG-deficient equivalents, IL-4 and IL-13 decreased the levels of skin barrier proteins (e.g., involucrin and loricrin), TJ proteins (e.g., occludin), and hBD-2 and increased basal layer proliferation rates and TSLP levels to a greater extent than in normal skin equivalents. This suggests that the combination of type 2 immunity and FLG deficiency may promote AD development more than either alone.
NMFs are composed of FLG degradation products (i.e., free amino acids, urocanic acid, and pyrrolidine carboxylic acid), urea, and lactate derived from sweat. Under normal conditions, the decrease in hydration from middle to outer SC levels promotes FLG detachment from the corneocyte envelope and degradation, forming NMFs (Rawlings and Matts, 2005; Sandilands et al., 2009).
NMFs retain moisture, contributing to barrier function by promoting epidermal hydration through osmotic gradients that allow the movement of water into the corneocytes (Björklund et al., 2014; Kezic et al., 2008). NMFs maintain and buffer the acidic pH of the SC, which may reduce colonization by pathogenic bacteria (Kezic et al., 2008; Krien and Kermici, 2000; Miajlovic et al., 2010). NMFs also promote epidermal maturation and desquamation (Kezic et al., 2011). Decreased SC NMF levels are associated with dry skin and skin diseases such as ichthyosis vulgaris and AD. IL-4 and IL-13 reduce FLG levels and sweat secretion, which thereby affect NMF composition and function (Howell et al., 2009, 2007; Sehra et al., 2010).
Loricrin and involucrin are key structural proteins of the cornified envelope that anchor keratin filaments, providing mechanical strength and flexibility to the corneocytes (Candi et al., 1998; Roth et al., 2012; Steinert and Marekov, 1995). Both loricrin and involucrin are highly insoluble in late-stage KC differentiation, resulting from disulfide and transglutaminase cross-linking within the molecules and to other proteins in the cell envelope in corneocytes (Hohl et al., 1991; Rice and Green, 1979; Steinert and Marekov, 1995). Loricrin is more prominent toward the cytoplasmic surface of the envelope, whereas involucrin is localized proximate to the lipid portion of the envelope (Jarnik et al., 2002; Steinert and Marekov, 1995).
IL-4 and IL-13 downregulate loricrin and involucrin expression in KCs (Kim et al., 2011, 2008), which may account for the reduced levels observed in AD. TNF-α reduces loricrin and involucrin expression, which also explains their reduced levels in psoriasis (Kim et al., 2011, 2008). Interestingly, silencing FLG expression in normal human KCs reduced involucrin expression but upregulated the expression of loricrin and IL-2, IL-4, IL-5, and IL-13 (Dang et al., 2015).
Proteases have multiple roles in the SC, mediated by both their direct proteolytic activity and through protease-activated receptors (PARs) (Figure 3). They influence SC cohesion, degrade corneodesmosome proteins (desmogleins and desmocollins) during homeostatic desquamation, regulate lipid synthesis by degrading enzymes that process extracellular lipids, and reduce lipid secretion into the extracellular matrix by stimulating the type 2 plasminogen receptor (Borgoño et al., 2007; Brattsand and Egelrud, 1999; Caubet et al., 2004; Hachem et al., 2006, 2005; Sales et al., 2010; Watkinson, 1999).
Serine protease activity is increased in both lesional and nonlesional AD skin (Komatsu et al., 2007; Voegeli et al., 2009). Increased serine protease activity compromises barrier function by increasing the degradation of corneodesmosomes and extracellular lipid-processing enzymes, reducing ceramide production (a characteristic abnormality of AD) (Borgoño et al., 2007; Di Nardo et al., 1998; Hachem et al., 2005, 2003; Imokawa et al., 1991). Serine proteases and cysteine proteases activate the PAR2 receptor, which regulates the secretion of lamellar bodies and cornification (Demerjian et al., 2008; Hachem et al., 2006), and is linked to increased inflammation, itch, and epidermal barrier disruption (Briot et al., 2009; Wilson et al., 2013). Both endogenous and exogenous proteases (e.g., from allergens, such as cockroach and dust mites, or from bacteria, such as S. aureus alpha-toxin) activate PAR2 (Ebeling et al., 2007; Hachem et al., 2006; Jeong et al., 2008; Kato et al., 2009). PAR2 activation reduces the expression of TJ proteins (occludin, CLDN-1, and ZO-1) and impairs TJ function, as assessed by reduced transepithelial electrical resistance (owing to a diminished barrier to ions) and increased permeability to small proteins (Nadeau et al., 2018). Thus both allergens and cutaneous dysbiosis may promote skin barrier disruption in AD through PAR2-mediated mechanisms. Finally, PAR2 agonists also increase the expression of IL-4 and IL-13 by mast cells, whereas PAR2 inhibition blocks IL-4 and IL-13 expression, decreases skin thickening, and suppresses itching in AD models (Barr et al., 2019). Of interest, Netherton syndrome, a monogenic AD-like syndrome characterized by the loss of serine protease inhibition due to a mutation in SPINK5 (which codes for the protease inhibitor LEKTI), is associated with kallikrein 5‒mediated PAR2 activation resulting in the production of the pro–type 2 cytokine TSLP by KCs (Briot et al., 2010).
Matrix metalloproteinases (MMPs), which affect tissue remodeling and inflammatory cell migration into the epidermis, may also play an important role in AD pathogenesis (Groneberg et al., 2005; Harper et al., 2010; Purwar et al., 2008). MMP activity was 10‒24 times greater in saline wash samples from AD lesional skin than in healthy controls, which do not normally express MMPs (Harper et al., 2010). IL-13 induces MMP-9 expression in KCs, and expression of both MMP-9 and IL-13 is increased in acute AD lesions (Purwar et al., 2008). MMP-12, which induces inflammatory cell aggregation, is also upregulated in lesional and nonlesional AD skin (Brunner et al., 2017; Pavel et al., 2020; Zhu et al., 2019).
SC lipid components
Skin barrier lipids are localized in the extracellular matrix surrounding corneocytes and are secreted from lamellar bodies before cornification (Figure 3) (Elias et al., 1998; Menon et al., 1992). By weight, these lipids include approximately 47% ceramides, 24% cholesterol, 18% cholesterol esters, and 11% free fatty acids (FFAs) (Ohno et al., 2015; Rawlings and Matts, 2005; van Smeden and Bouwstra, 2016). The SC contains several types of ceramides, many of which have very long fatty acid chains and are highly hydrophobic (Berdyshev et al., 2018; Rawlings and Matts, 2005; van Smeden and Bouwstra, 2016).
Lipids form densely packed layers in the central portion of the SC, becoming less densely packed and more gel-like closer to the surface (Brancaleon et al., 2001; Pilgram et al., 1999). Alterations of this packing pattern, resulting from altered lipid composition and lipid-chain shortening, are thought to contribute significantly to skin barrier impairment in AD (Berdyshev et al., 2018; Pilgram et al., 2001; van Smeden and Bouwstra, 2016; van Smeden et al., 2014). Fatty acid chains are lengthened by elongases (Ewald et al., 2015; van Smeden and Bouwstra, 2016). The expression of the elongases ELOVL1, ELOVL3, and ELOVL6 is reduced in lesional AD skin, resulting in shortened fatty acid chains and increased skin barrier permeability (Berdyshev et al., 2018; Danso et al., 2017). The higher proportion of short fatty acids correlates with changes in lipid organization and skin barrier function and is associated with AD severity (Janssens et al., 2012; Li et al., 2017; van Smeden et al., 2014). IL-4 and IL-13 inhibit KCs expression of ELOVL1, ELOVL3, and ELOVL6 (Berdyshev et al., 2018; Danso et al., 2017), and IL-4 inhibits ceramide synthesis (Hatano et al., 2005).
Sweat
Sweat is an important component of the skin barrier. Sweat forms a protective layer on the SC surface, contributing to thermoregulation, moisturizing the skin surface, and regulating water retention (Murota et al., 2015). In addition to water, electrolytes, lactate, basic nitrogenous compounds (e.g., urea, ammonia), amino acids, and proteins (Hiragun et al., 2017), sweat contains antimicrobial peptides (AMPs) (e.g., dermcidin and cathelicidin [see below]) and secretory IgA, which protect against infection (Imayama et al., 1994; Metze et al., 1991; Murakami et al., 2002). TJs prevent sweat ducts from leaking sweat contents into the dermis. CLDN-3 is the most prevalent TJ protein that regulates sweat gland permeability (Yamaga et al., 2018).
Patients with AD may have an impaired ability to sweat (Takahashi et al., 2013; Yamaga et al., 2018), causing sweat leakage into the dermis leading to local inflammation and reducing the beneficial effects of sweating (Shiohara et al., 2011; Takahashi et al., 2013). Skin dryness and increased susceptibility to infection caused by decreased sweating at the skin surface may also worsen AD symptoms (Murota et al., 2018; Shimoda-Komatsu et al., 2018). Dermal sweat leakage is due to reduced CLDN-3 expression in AD sweat ducts (Yamaga et al., 2018). AD exacerbation may also result from sweat allergy―an IgE-mediated hypersensitivity to sweat, particularly to fungal (Malassezia) protein antigens commonly found in sweat (Hiragun et al., 2013; Takahagi et al., 2018). Sweat glands also express IL-13 receptors, suggesting a role for type 2 inflammation in sweat regulation (Akaiwa et al., 2001).
TJs
TJs connect epithelial cells in the SG (Figure 3) (Kubo et al., 2009; Yoshida et al., 2014, 2013). Unlike desmosomes, which are structural connectors between KCs, TJs play a more active role in skin barrier function. The continuous barrier formed by TJs limits the penetration of allergens, microbes, and irritants and regulates TEWL (De Benedetto et al., 2011b; Furuse et al., 2002; Kirschner et al., 2013; Rahn et al., 2017; Yoshida et al., 2013). In the SG, KCs flatten and form a tetrakaidekahedron shape (a 14-sided polygon with eight hexagonal and six rectangular sides). A model based on this shape showed that TJ connections can be maintained by three SG cells, ensuring that KCs never lose contact with adjacent KCs during differentiation as KCs move outward toward the SC (Yokouchi et al., 2016; Yoshida et al., 2013).
TJs contain intracellular and extracellular proteins that control the movement of water, ions, and solutions between KCs (Anderson and Van Itallie, 2009; Kubo et al., 2009; Yoshida et al., 2014, 2013). The transmembrane proteins found in TJs include occludin, CLDN family members, and junctional adhesion molecules (Brandner et al., 2002; Ebnet et al., 2004; Furuse et al., 2002, 1998, 1993; Kirschner et al., 2010; Liu et al., 2000; Morita et al., 1998; Wang et al., 2018). These transmembrane proteins connect to a cytoplasmic plaque complex, composed of ZO proteins (ZO-1, ZO-2, and ZO-3), cingulin, and other proteins (Brandner et al., 2002; Citi et al., 1988; Helfrich et al., 2007; Kirschner et al., 2013; Malminen et al., 2003; Morita et al., 1998; Pummi et al., 2001). CLDN-1 is critically important for skin barrier function, first appreciated with the CLDN-1‒deficient mouse which succumbs during infancy as the consequence of extensive epidermal water loss (Furuse et al., 2002).
Reduced CLDN-1 and CLDN-3 levels in human AD skin are associated with epidermal barrier dysfunction (De Benedetto et al., 2011a; Yamaga et al., 2018). Reduced CLDN-3 levels are associated with increased sweat leakage in patients with AD (Yamaga et al., 2018). In an in vitro study, reduced CLDN-1 expression enhanced herpes simplex viral spreading, suggesting a mechanism for the susceptibility of patients with AD to eczema herpeticum (De Benedetto et al., 2011b). A number of other CLDNs, including CLDN-4, CLDN-8, and CLDN-23, have been shown to be reduced in AD skin lesions (De Benedetto et al., 2011a; Esaki et al., 2015).
TJs also serve a fence function, separating two biologically distinct layers of the epidermis, that is, the cornifying KCs in the upper layer of the SG and the SC, and the stratum spinosum (Figure 3). Although Langerhans cell dendrites do not usually translocate through TJs in healthy skin, with minor physical trauma, they do, leading to reorganization of the TJs to preserve barrier integrity (Figure 3) (Kubo et al., 2009). This compensatory response prevents TEWL and limits antigen transit. In contrast, in AD lesional skin, greater numbers of Langerhans cell dendrites penetrate TJs, increasing their access to environmental antigens present on the epidermal surface (Figure 3) (Yoshida et al., 2014). Of interest, key innate immune receptors are only expressed on the basilar side of the epidermis (below the TJs) (Kuo et al., 2013). This loss of fence function observed in AD skin likely plays a role in allergen polysensitization, a characteristic of most patients with AD.
Type 2 inflammation may weaken TJ barrier function in AD. For example, in FLG-knockdown skin equivalents, IL-4 and IL-13 decreased the expression of occludin (Hönzke et al., 2016). Furthermore, it is possible that the ratio of IL-4 to IL-17 may determine the TJ barrier function because IL-4 blocks the robust barrier-enhancing effects of IL-17A on KCs (Brewer et al., 2019). In vitro studies with human epidermal equivalents have shown that IL-4, IL-13, and IL-31 reduce CLDN-1 expression (Gruber et al., 2015).
The Inflammatory Response in Ad and Skin Barrier Disruption
A vicious circle: skin barrier disruption induces type 2 inflammation, and type 2 inflammation increases barrier disruption
Epidermal damage activates the innate immune response in a proinflammatory cascade (Figure 4). Skin barrier disruption permits access to external antigens by Langerhans cells and dermal dendritic cells, which present antigens to naive T cells and activate allergen-specific Th2 cells, leading to the release of the canonical type 2 cytokines, IL-4 and IL-13 (Dillon et al., 2004; Jarrett et al., 2016; Oyoshi et al., 2010; Sonkoly et al., 2006). In response to barrier disruption and exposure to S. aureus and allergens, KCs and innate immune cells release chemokines (e.g., CCL1, CCL2, CCL3, CCL4, CCL5, CCL11, CCL13, CCL17, CCL18, CCL22, CCL26, and CCL27) that attract proinflammatory cells (Gros et al., 2009; Homey et al., 2006; Pivarcsi et al., 2004). Skin barrier disruption also stimulates KCs to release alarmins (i.e., proinflammatory type 2 immunity-promoting cytokines such as TSLP, IL-18, IL-25, and IL-33). In turn, the alarmins induce ILC2s, Th2 cells, and basophils to release type 2 cytokines (Giustizieri et al., 2001; Gros et al., 2009; Hardman et al., 2017; Kim et al., 2014; Leyva-Castillo et al., 2013; Mashiko et al., 2017; Neill et al., 2010; Oyoshi et al., 2010; Pivarcsi et al., 2004; Schmitz et al., 2005; Sokol et al., 2008; Stott et al., 2013; Terada et al., 2006; Yoshimoto et al., 1999; Zedan et al., 2015). In addition, alarmins induce ILC2s and dendritic cells to express the costimulatory molecule OX40 ligand, which binds to OX40 receptors on T cells, promoting Th2 differentiation (Halim et al., 2018; Ito et al., 2005).
Figure 4.
Skin barrier disruption and type 2 inflammation in AD. In acute AD, barrier defects in compromised skin lead to increased permeability and penetration of environmental factors (e.g., microbes, allergens) (1). Skin barrier defects and infiltration of immune cells lead to type 2‒mediated production of inflammatory cytokines (e.g., IL-4, IL-13, IL-31) (2). In the epidermis, epithelial barriers predisposed to type 2‒mediated disease are characterized by barrier disruption and greater numbers of Langerhans cells with dendrites penetrating through TJs (3). In chronic AD, type 2 inflammatory responses lead to epithelial remodeling and proliferation (e.g., FLG and other proteins, lipids, and AMPs) (4). The inflammatory cascade is further intensified by IL-4‒ and IL-13‒mediated immune responses (5). AD, atopic dermatitis; AMP, antimicrobial peptide; CCL17, C–C motif chemokine ligand 17 (thymus and activation-regulated chemokine); ILC2, type 2 innate lymphoid cell; OX40L, OX40 ligand; Th, T helper; TJ, tight junction.
Type 2 inflammatory cytokines contribute to skin barrier disruption through multiple pathways (Figure 5). For example, type 2 inflammatory cytokines inhibit the expression of epidermal proteins, such as FLG, loricrin, and involucrin (Amano et al., 2015; Howell et al., 2009, 2007; Hvid et al., 2011; Kim et al., 2015; Mitamura et al., 2018a; Sehra et al., 2010; Seltmann et al., 2015) and promote the production of short-chain fatty acids (Berdyshev et al., 2018; Danso et al., 2017). In areas of active AD, type 2 inflammation leads to the recruitment of additional innate immune effector cells, including eosinophils, basophils, and mast cells (Figure 4). These effector cells release mediators such as histamine and major basic protein that not only exacerbate inflammation but also worsen skin barrier disruption by downregulating SC structural proteins and disrupting TJs (De Benedetto et al., 2015; Gschwandtner et al., 2013; Onoue et al., 2009). In addition, basophils release histamine, lipid mediators, and type 2 inflammatory cytokines, which further amplify AD pathogenesis (Kim et al., 2014; Mashiko et al., 2017; Sokol et al., 2008).
Figure 5.
Different components of the skin barrier affected by type 2 inflammation (mainly IL-4 and IL-13). AMP, antimicrobial peptide; NMF, natural moisturizing factor.
Type 2 inflammation and itch–scratch response
In the normal host-protective type 2 immune response, scratching is an adaptive response to remove ectoparasites and other irritants or toxins from the skin surface. In contrast, in AD, scratching induced by pathogenic AD itch can exacerbate skin barrier disruption, promote S. aureus colonization, and lead to the release of alarmins that enhance type 2 inflammation (Buhl et al., 2020; Hashimoto et al., 2011; Hu et al., 2021; Imai et al., 2014; Malhotra et al., 2016; Oetjen et al., 2017; Oyoshi et al., 2010; Wilson et al., 2013). KCs also play a role in pruritus by releasing TSLP and other itch-promoting alarmins in response to type 2 inflammatory mediators and proteases (Wilson et al., 2013). Type 2 inflammatory cytokines and alarmins promote the itch–scratch cycle by activating pruritogenic sensory neurons, which have IL-4, IL-13, IL-31, IL-33, and TSLP receptors (Cevikbas et al., 2014; Feld et al., 2016; Liu et al., 2016; Oetjen et al., 2017; Oh et al., 2013; Sonkoly et al., 2006; Wilson et al., 2013). IL-4 and IL-13 also sensitize neurons, making them more responsive to itch-inducing substances, such as IL-31 and histamine (Oetjen et al., 2017), and act synergistically to stimulate acute and chronic itch and scratching behavior in mouse models (Campion et al., 2019). In addition, PAR2 receptors induce pruritus; activate T cells; increase the release of inflammatory mediators, including IL-13, TNF-α, and TSLP; and reduce TJ integrity (Buhl et al., 2020; Henehan and De Benedetto, 2019).
Skin barrier disruption affects sensory nerve ending positioning and density in AD (Figure 3) (Takahashi et al., 2019). Neuron density and branching are greater in AD skin than in normal skin; these changes are seen to a greater extent in chronic than in acute AD (Guseva et al., 2020; Sugiura et al., 1997; Urashima and Mihara, 1998). In normal skin, sensory nerve endings do not penetrate TJs owing to a pruning process mediated by KCs at or near TJs, but in lesional AD skin and mouse models, sensory neuron fibers penetrate TJs in areas of epidermal disruption (Takahashi et al., 2019). This is another example of the loss of the TJ fence function in patients with AD.
Type 2 inflammation and epidermal hyperplasia
Type 2 inflammatory cytokines induce epidermal hyperplasia, a characteristic histologic feature of disease activity in chronic AD. Epidermal hyperplasia is evaluated by measuring epidermal thickness, Ki-67‒positive cells, and S100A8/9 and K16 expression (Esaki et al., 2016; Guttman-Yassky et al., 2019a; Hamilton et al., 2014; Ungar et al., 2017). IL-4 and IL-13 contribute to epidermal hyperplasia through disruptive effects on the skin barrier by suppressing lipid and structural protein production and KC differentiation (Gittler et al., 2012; Guttman-Yassky et al., 2019a; Hamilton et al., 2014; Howell et al., 2008, 2007; Kim et al., 2008). In a mouse model of acute AD, basophils were the primary source of IL-4 and IL-13 in the skin (Pellefigues et al., 2021). In this model, basophils and IL-4 induced epidermal hyperplasia and skin barrier dysfunction associated with increased numbers of K10-positive KCs and Ki-67/K14‒positive KCs and increased FLG expression and KC differentiation (Pellefigues et al., 2021). IL-22, which is found in AD lesional and nonlesional skin, is also a key driver of epidermal proliferation (Eyerich et al., 2009; Lou et al., 2017; Orfali et al., 2018; Suárez-Fariñas et al., 2011). IL-4 and IL-13 also promote fibrosis, leading to dermal thickening and scarring with increased collagen production, particularly in chronic AD (Figure 4) (Bhogal and Bona, 2008; Elbe-Bürger et al., 2002; Fichtner-Feigl et al., 2006; Gillery et al., 1992; Jessup et al., 2008; Kaviratne et al., 2004; Kolodsick et al., 2004; Oh et al., 2011; Oriente et al., 2000; Postlethwaite et al., 1992; Rankin et al., 2010; Zheng et al., 2009). In addition, inhibition of Notch signaling, which regulates KC differentiation, is associated with epidermal hyperplasia and enhanced the expression of TSLP, IL-4, and IL-13 (Dumortier et al., 2010; Murthy et al., 2012). Histamine binding to histamine 4 receptors stimulates KC proliferation, which may also contribute to hyperplasia (Glatzer et al., 2013). The counterbalance between epidermal hyperplasia (or proliferation) and differentiation (e.g., SC and TJ formation) suggests that anything that leads to greater KC proliferation could lead to barrier dysfunction (Guttman-Yassky et al., 2009; Pellefigues et al., 2021; Sladek, 2012).
The Skin as an Antimicrobial Barrier
The epidermal surface serves as an antimicrobial barrier through interactions between the skin surface microbiome and skin surface components, including AMPs, lipids, NMFs, pH, innate receptors, and resident antigen-presenting cells as well as T cells. On healthy skin, the microbiome includes diverse microorganisms that regulate local immune responses, control T-regulatory cell function, and inhibit pathologic microbes, thereby contributing to the antimicrobial barrier (Cogen et al., 2010; Grice et al., 2009; Lai et al., 2010; Naik et al., 2012; Sanford and Gallo, 2013). Its composition is affected by the integrity and function of epidermal barrier components, including long-chain unsaturated FFAs, AMPs, and NMFs (Baurecht et al., 2018; Braff et al., 2005; Feuillie et al., 2018; Takigawa et al., 2005). Commensal bacteria, such as S. hominis, are important for skin homeostasis and host defense against S. aureus (Cogen et al., 2010; Nakatsuji et al., 2017). They produce proteins with antimicrobial activity and induce KCs to produce AMPs, which limit S. aureus growth (Cogen et al., 2010; Lai et al., 2010; Nakatsuji et al., 2017).
Dysbiosis is a feature of AD, with reduced microbial diversity compared with normal skin, and characterized by a predominance of S. aureus (Fyhrquist et al., 2019; Higaki et al., 1999; Kong et al., 2012; Ricci et al., 2003; Simpson et al., 2018; Totté et al., 2016). Analyses have shown that the skin surface of 55–90% of patients with AD is colonized with S. aureus, versus 3–20% of healthy controls (Fyhrquist et al., 2019; Higaki et al., 1999; Masenga et al., 1990; Park et al., 2013; Pascolini et al., 2011; Ricci et al., 2003). Reduced microbial diversity in patients with S. aureus skin colonization may result from enhanced type 2 inflammation and alterations in skin barrier function (Kong et al., 2012; Simpson et al., 2018). Interestingly, one study showed that infants’ skin was colonized with S. aureus before their AD was diagnosed (Meylan et al., 2017). This suggests that dysbiosis may contribute to AD onset or amplification of disease activity (Kobayashi et al., 2015). Interestingly, patients with AD and S. aureus colonization have more severe disease, with greater type 2 deviation, allergen sensitization, and skin barrier dysfunction (Byrd et al., 2017; Fyhrquist et al., 2019; Kong et al., 2012; Simpson et al., 2018). S. aureus toxins can induce mast cell degranulation, leading to increased itch, inflammation, and KC death, which is made worse by coexposure with IL-4 and IL-13 (Brauweiler et al., 2014; Lin et al., 2003; Nakamura et al., 2013; Sonkoly et al., 2006). S. aureus‒derived superantigens disrupt epithelial barrier function and enhance epithelial chemokine expression, which may promote greater leukocyte infiltration (Lin et al., 2003; Savinko et al., 2005; Schlievert et al., 2019). What remains unclear is what initiates the abnormalities commonly observed in patients with AD and the cause–effect relationships between dysbiosis, epidermal barrier defects, and type 2 inflammation.
AMPs inhibit the growth of microbial pathogens and support epidermal surface colonization by nonpathogenic commensal microbes (Cogen et al., 2010; Lai et al., 2010; Nakatsuji et al., 2017; Ong et al., 2002). AMPs are produced by KCs and sweat gland cells in response to colonization/infection, inflammation, or barrier disruption (Braff et al., 2005; Lee et al., 2008; Murakami et al., 2002). The most commonly studied AMPs are the cathelicidin LL-37, and hBD-2 and hBD-3, which together inhibit the growth of S. aureus. These are typically increased with inflammation; however, IL-4 and IL-13 inhibit their production (Hönzke et al., 2016; Nomura et al., 2003; Ong et al., 2002). AMPs are also commonly produced by activation of innate immune receptors, such as toll-like receptors (TLRs), present on epidermal cells. TLR2 is important for responding to S. aureus but is downregulated in patients with AD (Kuo et al., 2013). AMPs have additional roles in skin barrier maintenance. For example, hBD-3 and TLR2 agonists have also been shown to increase the expression of CLDNs and other factors that regulate TJ function (Kiatsurayanon et al., 2014; Kuo et al., 2013).
Extracellular matrix lipids (e.g., FFAs and sphingomyelin) contribute to the antimicrobial barrier by limiting bacterial growth, maintaining acidic pH, and activating AMPs (Baurecht et al., 2018; Bibel et al., 1992; Jiang et al., 2013; Miller et al., 1988; Nakatsuji et al., 2010; Takigawa et al., 2005). Permeability barrier impairment due to increased surface pH and reduced levels of long-chain FFAs and sphingosine also impairs epidermal antimicrobial function (Bibel et al., 1992; Hülpüsch et al., 2020; Miller et al., 1988; Zainal et al., 2020).
There is tremendous cross-talk between type 2 inflammation, S. aureus colonization, and epidermal barrier dysfunction (Figure 4). For example, patients with severe AD frequently have S. aureus strains on their skin that produce enterotoxins, proteases, lipases, and superantigens that enhance B-cell Ig class switching to IgE, increase epidermal expression of type 2 inflammation‒promoting alarmins and cytokines, and disrupt skin barrier function (Brauweiler et al., 2019, 2017, 2013; Fyhrquist et al., 2019; Gould et al., 2007; Leung et al., 1993; Nakatsuji et al., 2017, 2016; Williams et al., 2017). Even toxin-deficient S. aureus strains have been shown to disrupt TJs (Ohnemus et al., 2008), supporting the notion that S. aureus colonization may contribute to barrier impairment and type 2 polarization in AD.
In contrast, type 2 inflammation enhances the expression of S. aureus adhesins, such as fibrinogen and fibronectin (Cho et al., 2001a, 2001b). In parallel, type 2 cytokines, particularly IL-4 and IL-13, inhibit the production of AMPs and FFAs from epidermal cells in patients with AD and increase skin surface pH (Berdyshev et al., 2018; Danso et al., 2017; Hönzke et al., 2016; Nomura et al., 2003; Ong et al., 2002), further evidence that IL-4 and IL-13 enhance susceptibility to S. aureus colonization and thereby disturb barrier integrity.
Therapeutic Interventions Targeting the Skin Barrier
Many topical and systemic therapies have been evaluated for their ability to improve skin barrier function in patients with AD. Topical medications include topical corticosteroids (TCSs), topical calcineurin inhibitors (TCIs), phosphodiesterase-4 (PDE-4) inhibitors, and Jak inhibitors (Jakis) (Eichenfield et al., 2014; Katoh et al., 2020; Singh et al., 2020; Wollenberg et al., 2018a).
Topical medications
Topical medications, including TCS, TCI, the PDE-4 inhibitor crisaborole, and the Jakis delgocitinib and ruxolitinib, have been shown to improve AD lesional severity in clinical trials (Amano et al., 2015; Bissonnette et al., 2019a; Dähnhardt-Pfeiffer et al., 2013; Danby et al., 2014; Jensen et al., 2013, 2012, 2009; Nakagawa et al., 2020, 2019; Papp et al., 2021).
Topical medications differ in their effects on skin barrier function and type 2 inflammation. The TCIs pimecrolimus and tacrolimus have been shown to improve AD skin barrier structure and function at levels similar to or exceeding those observed with TCS (Dähnhardt-Pfeiffer et al., 2013; Danby et al., 2014; Jensen et al., 2013, 2012, 2011, 2009; Xhauflaire-Uhoda et al., 2007). In adults with mild-to-moderate AD, both TCS and pimecrolimus improved SC hydration; TEWL; epidermal differentiation; the levels of loricrin, involucrin, K5, K10, and K14; and epidermal hyperproliferation markers (e.g., K16) (Jensen et al., 2013, 2012, 2011). In contrast, TCS downregulated the expression of inflammatory biomarkers, involucrin, AMPs, hBDs, and lipid metabolism enzymes, and disrupted SC barrier structure, including lamellar body extrusion and lipid bilayer formation. In contrast, TCIs normalized these structures (Jensen et al., 2013, 2012, 2011). In similar studies, tacrolimus significantly improved multiple measures of skin barrier function and structure versus TCS in patients with quiescent (Danby et al., 2014) and/or moderate (Dähnhardt-Pfeiffer et al., 2013; Xhauflaire-Uhoda et al., 2007) AD.
In an intrapatient randomized double-blinded trial in 40 adults with mild-to-moderate AD, the PDE-4 inhibitor crisaborole significantly improved lesional skin barrier function compared with vehicle, as assessed by TEWL and immunohistochemistry, and modulated inflammatory and skin barrier‒related biomarkers, including CLDN-8 and K16, which correlated with improved barrier function and lesional scores (Bissonnette et al., 2019a; Paller et al., 2016).
The topical pan-Jaki delgocitinib targets Jak1, Jak2, Jak3, and tyrosine kinase (TYK) 2. In mouse models of AD, delgocitinib upregulated keratin and loricrin expression that had been downregulated by IL-4 and IL-13, improved skin barrier function (as assessed by TEWL), and increased NMF levels in KC cultures (Amano et al., 2015). Delgocitinib showed no effect on CLDN-1 and CLDN-4 staining versus vehicle, whereas TCS significantly decreased CLDN staining and caused significant skin atrophy versus delgocitinib (Anagawa-Nakamura et al., 2020).
Systemic medications
Conventional systemic immunosuppressive agents, such as corticosteroids, cyclosporine A, methotrexate, mycophenolate mofetil, and azathioprine, broadly target inflammation, but their use as treatments for AD is limited by safety concerns and the need to monitor for toxicities (Eichenfield et al., 2017; Katoh et al., 2020; Wollenberg et al., 2018b). To date, there is limited evidence that these treatments improve the skin barrier.
An increased understanding of AD pathogenesis has led to the development of systemic treatments specifically targeting type 2 inflammatory pathways. Data on their effects on skin barrier structure and/or function are available for the oral Jakis gusacitinib and tofacitinib and the mAbs tralokinumab, fezakinumab, GBR830, and dupilumab.
Two studies evaluated the effects of Jaki on skin barrier. A randomized, placebo-controlled, double-blind phase 1b trial evaluated oral gusacitinib (Jak1/2/3, TYK2, and spleen TYK inhibitor) in patients with moderate-to-severe AD (Bissonnette et al., 2019b; Pavel et al., 2019). On the basis of transcriptomic and immunohistochemistry analyses, gusacitinib downregulated serum and skin biomarkers for type 1, type 2, Th22, and Th17 inflammatory pathways; reduced epidermal hyperplasia, K16 expression, and inflammatory cell infiltrates; increased FLG expression; and shifted the gene expression profile of lesional skin toward that of nonlesional skin (Bissonnette et al., 2019b; Pavel et al., 2019). In a three-dimensional in vitro skin model in which IL-4 and IL-13 were used to induce AD-like changes, tofacitinib prevented AD-like histologic changes, maintained FLG expression, decreased the phosphorylation of STAT 3 and 6, upregulated the expression of KC differentiation genes (including desmocollin 1, FLG, involucrin, loricrin, and K1), and downregulated the expression of genes associated with AD-related immune responses (Clarysse et al., 2019).
Four mAbs have been evaluated for their effects on the skin barrier in patients with AD (fezakinumab, GBR 830, tralokinumab, and dupilumab); of these, fezakinumab and GBR 830 are currently investigational. In a randomized, placebo-controlled, double-blinded, phase 2a clinical trial in adults with moderate-to-severe AD, fezakinumab (a mAb directed against IL-22) administered as intravenous monotherapy improved lesional skin gene expression profiles and epidermal markers for inflammation and epidermal proliferation in patients with high levels of IL-22 skin expression at baseline but not in those with low baseline IL-22 levels (Brunner et al., 2019). In a randomized, double-blind, placebo-controlled trial in adults with moderate-to-severe AD, GBR 830 (an anti-OX40 mAb) administered intravenously significantly reduced OX40-positive T-cell and OX40 ligand+ dendritic cell counts and significantly improved measures of epidermal hyperplasia, including reductions in epidermal thickness, K16 mRNA expression, and Ki-67+ cell counts, compared with placebo (Guttman-Yassky et al., 2019b).
Tralokinumab is a mAb directed against IL-13 that has been approved in Europe for the treatment of adults with moderate-to-severe AD who are candidates for systemic therapy (European Medicines Agency, 2021a). In a phase 3 trial in adults with moderate-to-severe AD, tralokinumab significantly reduced the levels of S. aureus colonization (on the basis of routine culture techniques) on lesional skin compared with placebo (Wollenberg et al., 2021).
Dupilumab, a fully human mAb that inhibits the signaling of both IL-4 and IL-13 by blocking their shared receptor component (IL-4Rα), is approved for AD, asthma, and chronic rhinosinusitis with nasal polyps, which are diseases driven by type 2 inflammation (European Medicines Agency; 2021b; Pharmaceuticals and Medical Devices Agency, 2021; Regeneron, 2021). Dupilumab significantly improved abnormalities in skin barrier gene expression and epidermal proliferation in patients with AD (Beck et al., 2014; Guttman-Yassky et al., 2019a; Hamilton et al., 2014; Rohner et al., 2021). In biopsy data from adult patients with moderate-to-severe AD in two randomized, placebo-controlled, double-blinded phase 1 studies, dupilumab significantly reduced the expression of inflammatory biomarkers and epidermal proliferation biomarkers (e.g., K6b, K16, Ki-67); upregulated the expression of epidermal barrier structure and function markers (e.g., MATN4, CLDN8, ELN, CLDN11); and shifted AD-related gene expression in lesional skin toward that resembling nonlesional skin (Beck et al., 2014; Hamilton et al., 2014). Similarly, in a randomized, placebo-controlled, double-blinded phase 2 study in adult patients with moderate-to-severe AD, dupilumab significantly reduced the expression of genes important in type 2 inflammation (e.g., IL-13, IL-31), epidermal hyperplasia (e.g., Ki-67, K16), T cells, and dendritic cells; reduced Th17 and Th22 activity; and shifted the expression profile of the AD-related transcriptome of lesional skin toward that of nonlesional skin (Guttman-Yassky et al., 2019a). Dupilumab also increased the expression of epidermal differentiation factors, barrier components, inflammatory proteases (e.g., MMP12), FLG, loricrin, CLDN-8 and CLDN-23, and ELOVL3; significantly reduced epidermal hyperplasia in lesional skin (Figure 6); significantly decreased epidermal S. aureus abundance (qPCR); and normalized microbial diversity in patients with AD (Bieber, 2020; Callewaert et al., 2020; Guttman-Yassky et al., 2019a). A retrospective study in a tertiary treatment center comparing skin biopsies between before and after 6–8 weeks of dupilumab treatment in patients with severe AD reported substantial reductions in the expression of AD-related inflammatory cytokines and alarmins and increased expression of FLG, LEKTI1, hBD-3, and LL-37 (Rohner et al., 2021). In an open-label transcriptomic analysis of tape strips and biopsies in adult patients with moderate-to-severe AD, biomarkers associated with healthy skin barrier that were decreased at baseline (e.g., keratins, FLG, periplakin, and lipid metabolism markers) showed increased expression after 16 weeks of treatment with dupilumab. Improvement in several of these skin barrier markers was significantly correlated with improvement in clinical signs (Mikhaylov et al., 2021). Finally, transcriptomic data from a European registry study (TREATgermany [German National Clinical Registry for Patients With Moderate-to-severe Atopic Dermatitis]) of adults with moderate-to-severe AD showed that dupilumab treatment for 12 weeks led to a stronger normalization of skin barrier‒related genes than cyclosporin (Möbus et al., 2021). In this observational analysis of a nonrandomized cohort of patients, dupilumab treatment decreased the expression of type 2‒related chemokines (e.g., CCL13, CCL17, CCL18, and CCL22) and normalized the expression of barrier function‒related markers (e.g., CLDN8, ELOVL3, FLG, K1, K10, and loricrin gene LOR) (Möbus et al., 2021). In contrast, cyclosporine resulted in stronger improvement in the expression of certain KC differentiation markers (e.g., K16, K6A, P13, and LCE3A) and some genes related to immune pathways (e.g., IL2RA, IL9R, CXCL3, CTLA4, OX40-R/OX40, S100A8, and S100A9) and the Th17/IL-23 axis (e.g., IL-22, IL-23A/p19, IL-12B/p40, and P13/elafin).
Figure 6.
Histologic changes observed with dupilumab treatment. Lesional skin samples taken from AD subjects before and 16 weeks after treatment with placebo or dupilumab (300 mg subcutaneously every 2 weeks) were stained with H&E. These two representative cases are notable for epidermal hyperplasia, spongiosis with elongated rete ridges, and a disordered basket-weave pattern to the SC layers in the placebo (baseline and 16 weeks) and dupilumab (baseline) images. After dupilumab treatment (16 weeks), the epidermis is no longer hyperplastic or spongiotic, rete ridges have normalized, and the SC is compact. In addition, these changes are seen in the context of reduced inflammatory perivascular infiltrates. Images were provided with permission from Guttman-Yassky et al. (2019a), courtesy of Emma Guttman-Yassky, Center for Excellence in Eczema, Department of Dermatology, Icahn School of Medicine at Mount Sinai (New York, NY). AD, atopic dermatitis; SC, stratum corneum.
Conclusions
Skin barrier function depends on multiple interacting systems that affect structural and functional components of the skin, including the SC and TJs, type 2 inflammatory pathways, cellular and extracellular components of the epithelium, and interactions with the microbiome and other environmental factors. Skin barrier dysfunction in AD is driven by genetic predisposition, environmental factors, and inflammation. It has been postulated that the rise in allergic diseases (including AD) in industrialized countries may be due to substances present in modern urban environments that can damage epithelial barriers, such as detergents and their additives, emulsifiers in food, and various pollutants (Akdis, 2021). The type 2 inflammatory cytokines IL-4 and IL-13 play an important role in the disruption of skin barrier function, affecting multiple components of the skin barrier and at the same time being induced by barrier disruption (Figure 6). Targeting type 2 cytokines in AD has a broad range of beneficial effects on the components of the skin barrier, including lipids, proteins, skin pH, corneocyte structure, TJs, sweat glands, and the microbiome, reinforcing the notion that AD is a systemic type 2 inflammatory disease. Further research is needed to confirm to what extent type 2‒targeted therapies can improve skin barrier function and what role this barrier repair plays in the clinical improvement seen in AD.
ORCIDs
Lisa A. Beck: http://orcid.org/0000-0002-8452-667X
Michael J. Cork: http://orcid.org/0000-0003-4428-2428
Masayuki Amagai: http://orcid.org/0000-0003-3314-7052
Anna De Benedetto: http://orcid.org/0000-0001-6293-435X
Kenji Kabashima: http://orcid.org/0000-0002-0773-0554
Jennifer D. Hamilton: http://orcid.org/0000-0003-1236-5245
Ana B. Rossi: http://orcid.org/0000-0001-5345-678X
Author Contributions
Conceptualization: LAB, MJC, MA, ADB, KK, JDH, ABR; Funding Acquisition: JDH, ABR; Visualization: LAB, MJC, MA, ADB, KK, JDH, ABR; Writing - Original Draft Preparation: LAB, MJC, MA, ADB, KK, JDH, ABR; Writing - Review and Editing: LAB, MJC, MA, ADB, KK, JDH, ABR
Acknowledgments
The authors gratefully acknowledge Emma Guttman-Yassky at the Center for Excellence in Eczema, Department of Dermatology, Icahn School of Medicine at Mount Sinai (New York, NY) and Takaharu Okada at RIKEN IMS (Yokohama, Japan) for their contributions of images to this manuscript and Sivan Harel of Regeneron Pharmaceuticals, Inc. (Tarrytown, New York) and Yufang Lu, formerly of Regeneron Pharmaceuticals, Inc., for their feedback on this manuscript. This study is sponsored by Sanofi and Regeneron Pharmaceuticals, Inc. Medical writing and editorial assistance were provided by Vicki Schwartz and Ekaterina Semenova of Excerpta Medica funded by Sanofi Genzyme and Regeneron Pharmaceuticals, Inc., in accordance with the Good Publication Practice guideline. https://www.acpjournals.org/doi/10.7326/M15-0288.
Conflict of Interest
LAB is a consultant for AbbVie, Allakos, AstraZeneca, BenevolentAI Bio, DermTech, Galderma, Incyte, Janssen, LEO Pharma, Lilly, Novartis, Pfizer, Principia Biopharma, Rapt Therapeutics, Regeneron Pharmaceuticals, Inc., Ribon Therapeutics, Sanofi Genzyme, Sanofi-Aventis, and Stealth Biotherapeutics; an investigator for AbbVie, AstraZeneca, Kiniksa, LEO Pharma, Pfizer, Regeneron Pharmaceuticals, Inc., and Sanofi; and a stock owner of Medtronics, 3M, Moderna, and Gilead. MJC is an investigator and/or consultant for AbbVie, Astellas, Atopic, Boots, Dermavant, Eli Lilly, Galapagos, Galderma, Harvey Water Softeners, Hyphens Pharma, Johnson & Johnson, Kymab, LEO Pharma, L’Oréal, Menlo Therapeutics, Novartis, Oxagen, Perrigo (ACO Nordic), Pfizer, Procter & Gamble, Reckitt Benckiser, Regeneron Pharmaceuticals, Inc., Sanofi Genzyme, and UCB Pharma. MA has received consulting fees, honoraria, grant support, and/or lecturing fees from Maruho, Mitsubishi Tanabe, Ono Pharmaceutical, Sanofi, Torii Pharmaceutical, Pola Pharma, and Kyowa Kirin. ADB is an investigator and/or consultant for Allakos, Dermira, Kiniksa, Regeneron Pharmaceuticals, Inc., Pfizer, and Sanofi Genzyme. KK has received consulting fees, honoraria, grant support, and/or lecturing fees from Japan Tobacco, LEO Pharma, Maruho, Mitsubishi Tanabe, Ono Pharmaceutical, Procter & Gamble, Sanofi, Taiho, and Torii Pharmaceutical. JDH is an employee and shareholder of Regeneron Pharmaceuticals, Inc. and is an inventor in Regeneron patents. ABR is an employee and may hold stock and/or stock options in Sanofi Genzyme.
corrected proof published online XXX
Footnotes
Cite this article as: JID Innovations 2022;X:100131
Supplementary material is linked to the online version of the paper at www.jidonline.org, and at https://doi.org/10.1016/j.xjidi.2022.100131
Supplementary Material
References
- Akaiwa M., Yu B., Umeshita-Suyama R., Terada N., Suto H., Koga T., et al. Localization of human interleukin 13 receptor in non-haematopoietic cells. Cytokine. 2001;13:75–84. doi: 10.1006/cyto.2000.0814. [DOI] [PubMed] [Google Scholar]
- Akdis C.A. Does the epithelial barrier hypothesis explain the increase in allergy, autoimmunity and other chronic conditions? Nat Rev Immunol. 2021;21:739–751. doi: 10.1038/s41577-021-00538-7. [DOI] [PubMed] [Google Scholar]
- Amano W., Nakajima S., Kunugi H., Numata Y., Kitoh A., Egawa G., et al. The Janus kinase inhibitor JTE-052 improves skin barrier function through suppressing signal transducer and activator of transcription 3 signaling. J Allergy Clin Immunol. 2015;136:667–677.e7. doi: 10.1016/j.jaci.2015.03.051. [DOI] [PubMed] [Google Scholar]
- Anagawa-Nakamura A., Ryoke K., Yasui Y., Shoda T., Sugai S. Effects of delgocitinib ointment 0.5% on the normal mouse skin and epidermal tight junction proteins in comparison with topical corticosteroids. Toxicol Pathol. 2020;48:1008–1016. doi: 10.1177/0192623320970896. [DOI] [PubMed] [Google Scholar]
- Anderson J.M., Van Itallie C.M. Physiology and function of the tight junction. Cold Spring Harb Perspect Biol. 2009;1:a002584. doi: 10.1101/cshperspect.a002584. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Archer N.K., Jo J.H., Lee S.K., Kim D., Smith B., Ortines R.V., et al. Injury, dysbiosis, and filaggrin deficiency drive skin inflammation through keratinocyte IL-1α release. J Allergy Clin Immunol. 2019;143:1426–1443.e6. doi: 10.1016/j.jaci.2018.08.042. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bao K., Reinhardt R.L. The differential expression of IL-4 and IL-13 and its impact on type-2 immunity. Cytokine. 2015;75:25–37. doi: 10.1016/j.cyto.2015.05.008. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barker J.N.W.N., Palmer C.N., Zhao Y., Liao H., Hull P.R., Lee S.P., et al. Null mutations in the filaggrin gene (FLG) determine major susceptibility to early-onset atopic dermatitis that persists into adulthood. J Invest Dermatol. 2007;127:564–567. doi: 10.1038/sj.jid.5700587. [DOI] [PubMed] [Google Scholar]
- Barr T.P., Garzia C., Guha S., Fletcher E.K., Nguyen N., Wieschhaus A.J., et al. PAR2 pepducin-based suppression of inflammation and itch in atopic dermatitis models. J Invest Dermatol. 2019;139:412–421. doi: 10.1016/j.jid.2018.08.019. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baurecht H., Irvine A.D., Novak N., Illig T., Bühler B., Ring J., et al. Toward a major risk factor for atopic eczema: meta-analysis of filaggrin polymorphism data. J Allergy Clin Immunol. 2007;120:1406–1412. doi: 10.1016/j.jaci.2007.08.067. [DOI] [PubMed] [Google Scholar]
- Baurecht H., Rühlemann M.C., Rodríguez E., Thielking F., Harder I., Erkens A.S., et al. Epidermal lipid composition, barrier integrity, and eczematous inflammation are associated with skin microbiome configuration. J Allergy Clin Immunol. 2018;141:1668–1676.e16. doi: 10.1016/j.jaci.2018.01.019. [DOI] [PubMed] [Google Scholar]
- Beck L.A., Thaçi D., Hamilton J.D., Graham N.M., Bieber T., Rocklin R., et al. Dupilumab treatment in adults with moderate-to-severe atopic dermatitis. N Engl J Med. 2014;371:130–139. doi: 10.1056/NEJMoa1314768. [DOI] [PubMed] [Google Scholar]
- Berdyshev E., Goleva E., Bronova I., Dyjack N., Rios C., Jung J., et al. Lipid abnormalities in atopic skin are driven by type 2 cytokines. JCI Insight. 2018;3 doi: 10.1172/jci.insight.98006. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bhogal R.K., Bona C.A. Regulatory effect of extracellular signal-regulated kinases (ERK) on type I collagen synthesis in human dermal fibroblasts stimulated by IL-4 and IL-13. Int Rev Immunol. 2008;27:472–496. doi: 10.1080/08830180802430974. [DOI] [PubMed] [Google Scholar]
- Bibel D.J., Aly R., Shinefield H.R. Antimicrobial activity of sphingosines. J Invest Dermatol. 1992;98:269–273. doi: 10.1111/1523-1747.ep12497842. [DOI] [PubMed] [Google Scholar]
- Bieber T. Targeting T2 inflammation by dupilumab impacts on the microbiomic "ménage à trois" of atopic dermatitis. J Invest Dermatol. 2020;140:15–17. doi: 10.1016/j.jid.2019.07.680. [DOI] [PubMed] [Google Scholar]
- Bissonnette R., Maari C., Forman S., Bhatia N., Lee M., Fowler J., et al. The oral Janus kinase/spleen tyrosine kinase inhibitor ASN002 demonstrates efficacy and improves associated systemic inflammation in patients with moderate-to-severe atopic dermatitis: results from a randomized double-blind placebo-controlled study. Br J Dermatol. 2019;181:733–742. doi: 10.1111/bjd.17932. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bissonnette R., Pavel A.B., Diaz A., Werth J.L., Zang C., Vranic I., et al. Crisaborole and atopic dermatitis skin biomarkers: an intrapatient randomized trial. J Allergy Clin Immunol. 2019;144:1274–1289. doi: 10.1016/j.jaci.2019.06.047. [DOI] [PubMed] [Google Scholar]
- Björklund S., Andersson J.M., Pham Q.D., Nowacka A., Topgaard D., Sparr E. Stratum corneum molecular mobility in the presence of natural moisturizers. Soft Matter. 2014;10:4535–4546. doi: 10.1039/c4sm00137k. [DOI] [PubMed] [Google Scholar]
- Blunder S., Rühl R., Moosbrugger-Martinz V., Krimmel C., Geisler A., Zhu H., et al. Alterations in epidermal eicosanoid metabolism contribute to inflammation and impaired late differentiation in FLG-mutated atopic dermatitis. J Invest Dermatol. 2017;137:706–715. doi: 10.1016/j.jid.2016.09.034. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boniface K., Bernard F.X., Garcia M., Gurney A.L., Lecron J.C., Morel F. IL-22 inhibits epidermal differentiation and induces proinflammatory gene expression and migration of human keratinocytes. J Immunol. 2005;174:3695–3702. doi: 10.4049/jimmunol.174.6.3695. [DOI] [PubMed] [Google Scholar]
- Borgoño C.A., Michael I.P., Komatsu N., Jayakumar A., Kapadia R., Clayman G.L., et al. A potential role for multiple tissue kallikrein serine proteases in epidermal desquamation. J Biol Chem. 2007;282:3640–3652. doi: 10.1074/jbc.M607567200. [DOI] [PubMed] [Google Scholar]
- Bouwstra J.A., de Graaff A., Gooris G.S., Nijsse J., Wiechers J.W., van Aelst A.C. Water distribution and related morphology in human stratum corneum at different hydration levels. J Invest Dermatol. 2003;120:750–758. doi: 10.1046/j.1523-1747.2003.12128.x. [DOI] [PubMed] [Google Scholar]
- Bouwstra J.A., Groenink H.W.W., Kempenaar J.A., Romeijn S.G., Ponec M. Water distribution and natural moisturizer factor content in human skin equivalents are regulated by environmental relative humidity. J Invest Dermatol. 2008;128:378–388. doi: 10.1038/sj.jid.5700994. [DOI] [PubMed] [Google Scholar]
- Bowden P.E., Quinlan R.A., Breitkreutz D., Fusenig N.E. Proteolytic modification of acidic and basic keratins during terminal differentiation of mouse and human epidermis. Eur J Biochem. 1984;142:29–36. doi: 10.1111/j.1432-1033.1984.tb08246.x. [DOI] [PubMed] [Google Scholar]
- Braff M.H., Zaiou M., Fierer J., Nizet V., Gallo R.L. Keratinocyte production of cathelicidin provides direct activity against bacterial skin pathogens. Infect Immun. 2005;73:6771–6781. doi: 10.1128/IAI.73.10.6771-6781.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brancaleon L., Bamberg M.P., Sakamaki T., Kollias N. Attenuated total reflection–Fourier transform infrared spectroscopy as a possible method to investigate biophysical parameters of stratum corneum in vivo. J Invest Dermatol. 2001;116:380–386. doi: 10.1046/j.1523-1747.2001.01262.x. [DOI] [PubMed] [Google Scholar]
- Brandner J.M., Kief S., Grund C., Rendl M., Houdek P., Kuhn C., et al. Organization and formation of the tight junction system in human epidermis and cultured keratinocytes. Eur J Cell Biol. 2002;81:253–263. doi: 10.1078/0171-9335-00244. [DOI] [PubMed] [Google Scholar]
- Brattsand M., Egelrud T. Purification, molecular cloning, and expression of a human stratum corneum trypsin-like serine protease with possible function in desquamation. J Biol Chem. 1999;274:30033–30040. doi: 10.1074/jbc.274.42.30033. [DOI] [PubMed] [Google Scholar]
- Brauweiler A.M., Bin L., Kim B.E., Oyoshi M.K., Geha R.S., Goleva E., et al. Filaggrin-dependent secretion of sphingomyelinase protects against staphylococcal α-toxin-induced keratinocyte death. J Allergy Clin Immunol. 2013;131 doi: 10.1016/j.jaci.2012.10.030. 421‒7.e1–2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brauweiler A.M., Goleva E., Leung D.Y.M. Th2 cytokines increase Staphylococcus aureus alpha toxin-induced keratinocyte death through the signal transducer and activator of transcription 6 (STAT6) J Invest Dermatol. 2014;134:2114–2121. doi: 10.1038/jid.2014.43. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brauweiler A.M., Goleva E., Leung D.Y.M. Staphylococcus aureus lipoteichoic acid damages the skin barrier through an IL-1-mediated pathway. J Invest Dermatol. 2019;139:1753–1761.e4. doi: 10.1016/j.jid.2019.02.006. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brauweiler A.M., Hall C.F., Goleva E., Leung D.Y.M. Staphylococcus aureus lipoteichoic acid inhibits keratinocyte differentiation through a p63-mediated pathway. J Invest Dermatol. 2017;137:2030–2033. doi: 10.1016/j.jid.2017.05.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brewer M.G., Yoshida T., Kuo F.I., Fridy S., Beck L.A., De Benedetto A. Antagonistic effects of IL-4 on IL-17A-mediated enhancement of epidermal tight junction function. Int J Mol Sci. 2019;20:4070. doi: 10.3390/ijms20174070. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Briot A., Deraison C., Lacroix M., Bonnart C., Robin A., Besson C., et al. Kallikrein 5 induces atopic dermatitis-like lesions through PAR2-mediated thymic stromal lymphopoietin expression in netherton syndrome. J Exp Med. 2009;206:1135–1147. doi: 10.1084/jem.20082242. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Briot A., Lacroix M., Robin A., Steinhoff M., Deraison C., Hovnanian A. Par2 inactivation inhibits early production of TSLP, but not cutaneous inflammation, in Netherton syndrome adult mouse model. J Invest Dermatol. 2010;130:2736–2742. doi: 10.1038/jid.2010.233. [DOI] [PubMed] [Google Scholar]
- Brown S.J., Asai Y., Cordell H.J., Campbell L.E., Zhao Y., Liao H., et al. Loss-of-function variants in the filaggrin gene are a significant risk factor for peanut allergy. J Allergy Clin Immunol. 2011;127:661–667. doi: 10.1016/j.jaci.2011.01.031. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown S.J., Kroboth K., Sandilands A., Campbell L.E., Pohler E., Kezic S., et al. Intragenic copy number variation within filaggrin contributes to the risk of atopic dermatitis with a dose-dependent effect. J Invest Dermatol. 2012;132:98–104. doi: 10.1038/jid.2011.342. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown S.J., McLean W.H. Eczema genetics: current state of knowledge and future goals. J Invest Dermatol. 2009;129:543–552. doi: 10.1038/jid.2008.413. [DOI] [PubMed] [Google Scholar]
- Brown S.J., McLean W.H.I. One remarkable molecule: filaggrin. J Invest Dermatol. 2012;132:751–762. doi: 10.1038/jid.2011.393. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown S.J., Relton C.L., Liao H., Zhao Y., Sandilands A., Wilson I.J., et al. Filaggrin null mutations and childhood atopic eczema: a population-based case-control study. J Allergy Clin Immunol. 2008;121:940–946.e3. doi: 10.1016/j.jaci.2008.01.013. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown S.J., Sandilands A., Zhao Y., Liao H., Relton C.L., Meggitt S.J., et al. Prevalent and low-frequency null mutations in the filaggrin gene are associated with early-onset and persistent atopic eczema. J Invest Dermatol. 2008;128:1591–1594. doi: 10.1038/sj.jid.5701206. [DOI] [PubMed] [Google Scholar]
- Brunner P.M., Pavel A.B., Khattri S., Leonard A., Malik K., Rose S., et al. Baseline IL-22 expression in patients with atopic dermatitis stratifies tissue responses to fezakinumab. J Allergy Clin Immunol. 2019;143:143–154. doi: 10.1016/j.jaci.2018.07.028. [DOI] [PubMed] [Google Scholar]
- Brunner P.M., Suárez-Fariñas M., He H., Malik K., Wen H.C., Gonzalez J., et al. The atopic dermatitis blood signature is characterized by increases in inflammatory and cardiovascular risk proteins. Sci Rep. 2017;7:8707. doi: 10.1038/s41598-017-09207-z. [published correction appears in Sci Rep 2018;8:8439] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Buhl T., Ikoma A., Kempkes C., Cevikbas F., Sulk M., Buddenkotte J., et al. Protease-activated receptor-2 regulates neuro-epidermal communication in atopic dermatitis. Front Immunol. 2020;11:1740. doi: 10.3389/fimmu.2020.01740. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Byrd A.L., Deming C., Cassidy S.K.B., Harrison O.J., Ng W.I., Conlan S., et al. Staphylococcus aureus and Staphylococcus epidermidis strain diversity underlying pediatric atopic dermatitis. Sci Transl Med. 2017;9 doi: 10.1126/scitranslmed.aal4651. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Callewaert C., Nakatsuji T., Knight R., Kosciolek T., Vrbanac A., Kotol P., et al. IL-4Rα blockade by dupilumab decreases Staphylococcus aureus colonization and increases microbial diversity in atopic dermatitis. J Invest Dermatol. 2020;140:191–202.e7. doi: 10.1016/j.jid.2019.05.024. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Campion M., Smith L., Gatault S., Métais C., Buddenkotte J., Steinhoff M. Interleukin-4 and interleukin-13 evoke scratching behaviour in mice. Exp Dermatol. 2019;28:1501–1504. doi: 10.1111/exd.14034. [DOI] [PubMed] [Google Scholar]
- Candi E., Tarcsa E., Digiovanna J.J., Compton J.G., Elias P.M., Marekov L.N., et al. A highly conserved lysine residue on the head domain of type II keratins is essential for the attachment of keratin intermediate filaments to the cornified cell envelope through isopeptide crosslinking by transglutaminases. Proc Natl Acad Sci USA. 1998;95:2067–2072. doi: 10.1073/pnas.95.5.2067. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Caubet C., Jonca N., Brattsand M., Guerrin M., Bernard D., Schmidt R., et al. Degradation of corneodesmosome proteins by two serine proteases of the kallikrein family, SCTE/KLK5/hK5 and SCCE/KLK7/hK7. J Invest Dermatol. 2004;122:1235–1244. doi: 10.1111/j.0022-202X.2004.22512.x. [DOI] [PubMed] [Google Scholar]
- Cevikbas F., Wang X., Akiyama T., Kempkes C., Savinko T., Antal A., et al. A sensory neuron–expressed IL-31 receptor mediates T helper cell–dependent itch: involvement of TRPV1 and TRPA1. J Allergy Clin Immunol. 2014;133:448–460. doi: 10.1016/j.jaci.2013.10.048. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen L., Martinez O., Overbergh L., Mathieu C., Prabhakar B.S., Chan L.S. Early up-regulation of Th2 cytokines and late surge of Th1 cytokines in an atopic dermatitis model. Clin Exp Immunol. 2004;138:375–387. doi: 10.1111/j.1365-2249.2004.02649.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cho S.H., Strickland I., Boguniewicz M., Leung D.Y. Fibronectin and fibrinogen contribute to the enhanced binding of Staphylococcus aureus to atopic skin. J Allergy Clin Immunol. 2001;108:269–274. doi: 10.1067/mai.2001.117455. [DOI] [PubMed] [Google Scholar]
- Cho S.H., Strickland I., Tomkinson A., Fehringer A.P., Gelfand E.W., Leung D.Y. Preferential binding of Staphylococcus aureus to skin sites of Th2-mediated inflammation in a murine model. J Invest Dermatol. 2001;116:658–663. doi: 10.1046/j.0022-202x.2001.01331.x. [DOI] [PubMed] [Google Scholar]
- Citi S., Sabanay H., Jakes R., Geiger B., Kendrick-Jones J. Cingulin, a new peripheral component of tight junctions. Nature. 1988;333:272–276. doi: 10.1038/333272a0. [DOI] [PubMed] [Google Scholar]
- Clarysse K., Pfaff C.M., Marquardt Y., Huth L., Kortekaas Krohn I., Kluwig D., et al. JAK1/3 inhibition preserves epidermal morphology in full-thickness 3D skin models of atopic dermatitis and psoriasis. J Eur Acad Dermatol Venereol. 2019;33:367–375. doi: 10.1111/jdv.15301. [DOI] [PubMed] [Google Scholar]
- Cogen A.L., Yamasaki K., Sanchez K.M., Dorschner R.A., Lai Y., MacLeod D.T., et al. Selective antimicrobial action is provided by phenol-soluble modulins derived from Staphylococcus epidermidis, a normal resident of the skin. J Invest Dermatol. 2010;130:192–200. doi: 10.1038/jid.2009.243. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dähnhardt-Pfeiffer S., Dähnhardt D., Buchner M., Walter K., Proksch E., Fölster-Holst R. Comparison of effects of tacrolimus ointment and mometasone furoate cream on the epidermal barrier of patients with atopic dermatitis. J Dtsch Dermatol Ges. 2013;11:437–443. doi: 10.1111/ddg.12074. [DOI] [PubMed] [Google Scholar]
- Dai X., Utsunomiya R., Shiraishi K., Mori H., Muto J., Murakami M., et al. Nuclear IL-33 plays an important role in the suppression of FLG, LOR, keratin 1, and keratin 10 by IL-4 and IL-13 in human keratinocytes. J Invest Dermatol. 2021;141:2646–2655.e6. doi: 10.1016/j.jid.2021.04.002. [DOI] [PubMed] [Google Scholar]
- Danby S.G., Chittock J., Brown K., Albenali L.H., Cork M.J. The effect of tacrolimus compared with betamethasone valerate on the skin barrier in volunteers with quiescent atopic dermatitis. Br J Dermatol. 2014;170:914–921. doi: 10.1111/bjd.12778. [DOI] [PubMed] [Google Scholar]
- Dang N.N., Pang S.G., Song H.Y., An L.G., Ma X.L. Filaggrin silencing by shRNA directly impairs the skin barrier function of normal human epidermal keratinocytes and then induces an immune response. Braz J Med Biol Res. 2015;48:39–45. doi: 10.1590/1414-431X20144047. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Danso M., Boiten W., van Drongelen V., Gmelig Meijling K., Gooris G., El Ghalbzouri A., et al. Altered expression of epidermal lipid bio-synthesis enzymes in atopic dermatitis skin is accompanied by changes in stratum corneum lipid composition. J Dermatol Sci. 2017;88:57–66. doi: 10.1016/j.jdermsci.2017.05.005. [DOI] [PubMed] [Google Scholar]
- Danso M.O., van Drongelen V., Mulder A., van Esch J., Scott H., van Smeden J., et al. TNF-α and Th2 cytokines induce atopic dermatitis-like features on epidermal differentiation proteins and stratum corneum lipids in human skin equivalents. J Invest Dermatol. 2014;134:1941–1950. doi: 10.1038/jid.2014.83. [DOI] [PubMed] [Google Scholar]
- Davidson W.F., Leung D.Y.M., Beck L.A., Berin C.M., Boguniewicz M., Busse W.W., et al. Report from the National Institute of Allergy and Infectious Diseases workshop on “Atopic dermatitis and the atopic march: mechanisms and interventions.”. J Allergy Clin Immunol. 2019;143:894–913. doi: 10.1016/j.jaci.2019.01.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- De Benedetto A., Rafaels N.M., McGirt L.Y., Ivanov A.I., Georas S.N., Cheadle C., et al. Tight junction defects in patients with atopic dermatitis. J Allergy Clin Immunol. 2011;127 doi: 10.1016/j.jaci.2010.10.018. 773‒86.e1–7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- De Benedetto A., Slifka M.K., Rafaels N.M., Kuo I.H., Georas S.N., Boguniewicz M., et al. Reductions in claudin-1 may enhance susceptibility to herpes simplex virus 1 infections in atopic dermatitis. J Allergy Clin Immunol. 2011;128:242–246.e5. doi: 10.1016/j.jaci.2011.02.014. [published correction appears in J Allergy Clin Immunol 2011b;128:903] [DOI] [PMC free article] [PubMed] [Google Scholar]
- De Benedetto A., Yoshida T., Fridy S., Park J.E., Kuo I.H., Beck L.A. Histamine and skin barrier: are histamine antagonists useful for the prevention or treatment of atopic dermatitis? J Clin Med. 2015;4:741–755. doi: 10.3390/jcm4040741. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Demerjian M., Hachem J.P., Tschachler E., Denecker G., Declercq W., Vandenabeele P., et al. Acute modulations in permeability barrier function regulate epidermal cornification: role of caspase-14 and the protease-activated receptor type 2. Am J Pathol. 2008;172:86–97. doi: 10.2353/ajpath.2008.070161. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Denecker G., Hoste E., Gilbert B., Hochepied T., Ovaere P., Lippens S., et al. Caspase-14 protects against epidermal UVB photodamage and water loss. Nat Cell Biol. 2007;9:666–674. doi: 10.1038/ncb1597. [DOI] [PubMed] [Google Scholar]
- Di Nardo A., Wertz P., Giannetti A., Seidenari S. Ceramide and cholesterol composition of the skin of patients with atopic dermatitis. Acta Derm Venereol. 1998;78:27–30. doi: 10.1080/00015559850135788. [DOI] [PubMed] [Google Scholar]
- Dillon S.R., Sprecher C., Hammond A., Bilsborough J., Rosenfeld-Franklin M., Presnell S.R., et al. Interleukin 31, a cytokine produced by activated T cells, induces dermatitis in mice. Nat Immunol. 2004;5:752–760. doi: 10.1038/ni1084. [published correction appears in Nat Immunol 2005;6:114] [DOI] [PubMed] [Google Scholar]
- Dumortier A., Durham A.-D., Di Piazza M., Vauclair S., Koch U., Ferrand G., et al. Atopic dermatitis-like disease and associated lethal myeloproliferative disorder arise from loss of Notch signaling in the murine skin. PLoS One. 2010;5:e9258. doi: 10.1371/journal.pone.0009258. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ebeling C., Lam T., Gordon J.R., Hollenberg M.D., Vliagoftis H. Proteinase-activated receptor-2 promotes allergic sensitization to an inhaled antigen through a TNF-mediated pathway. J Immunol. 2007;179:2910–2917. doi: 10.4049/jimmunol.179.5.2910. [DOI] [PubMed] [Google Scholar]
- Ebnet K., Suzuki A., Ohno S., Vestweber D. Junctional adhesion molecules (JAMs): more molecules with dual functions? J Cell Sci. 2004;117:19–29. doi: 10.1242/jcs.00930. [DOI] [PubMed] [Google Scholar]
- Eckert R.L., Sturniolo M.T., Broome A.M., Ruse M., Rorke E.A. Transglutaminase function in epidermis. J Invest Dermatol. 2005;124:481–492. doi: 10.1111/j.0022-202X.2005.23627.x. [DOI] [PubMed] [Google Scholar]
- Eckhart L., Lippens S., Tschachler E., Declercq W. Cell death by cornification. Biochim Biophys Acta. 2013;1833:3471–3480. doi: 10.1016/j.bbamcr.2013.06.010. [DOI] [PubMed] [Google Scholar]
- Eichenfield L.F., Ahluwalia J., Waldman A., Borok J., Udkoff J., Boguniewicz M. Current guidelines for the evaluation and management of atopic dermatitis: a comparison of the Joint Task Force Practice Parameter and American Academy of Dermatology guidelines. J Allergy Clin Immunol. 2017;139:S49–S57. doi: 10.1016/j.jaci.2017.01.009. [DOI] [PubMed] [Google Scholar]
- Eichenfield L.F., Tom W.L., Berger T.G., Krol A., Paller A.S., Schwarzenberger K., et al. Guidelines of care for the management of atopic dermatitis: Section 2 Management and treatment of atopic dermatitis with topical therapies. J Am Acad Dermatol. 2014;71:116–132. doi: 10.1016/j.jaad.2014.03.023. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Elbe-Bürger A., Egyed A., Olt S., Klubal R., Mann U., Rappersberger K., et al. Overexpression of IL-4 alters the homeostasis in the skin. J Invest Dermatol. 2002;118:767–778. doi: 10.1046/j.1523-1747.2002.01753.x. [DOI] [PubMed] [Google Scholar]
- Elias P.M. Structure and function of the stratum corneum permeability barrier. Drug Dev Res. 1988;13:97–105. [Google Scholar]
- Elias P.M., Cullander C., Mauro T., Rassner U., Kömüves L., Brown B.E., et al. The secretory granular cell: the outermost granular cell as a specialized secretory cell. J Investig Dermatol Symp Proc. 1998;3:87–100. doi: 10.1038/jidsymp.1998.20. [DOI] [PubMed] [Google Scholar]
- Elias P.M., Hatano Y., Williams M.L. Basis for the barrier abnormality in atopic dermatitis: outside-inside-outside pathogenic mechanisms. J Allergy Clin Immunol. 2008;121:1337–1343. doi: 10.1016/j.jaci.2008.01.022. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Esaki H., Ewald D.A., Ungar B., Rozenblit M., Zheng X., Zheng X., et al. Identification of novel immune and barrier genes in atopic dermatitis by means of laser capture microdissection. J Allergy Clin Immunol. 2015;135:153–163. doi: 10.1016/j.jaci.2014.10.037. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Esaki H., Brunner P.M., Renert-Yuval Y., Czarnowicki T., Huynh T., Tran G., et al. Early-onset pediatric atopic dermatitis is TH2 but also TH17 polarized in skin. J Allergy Clin Immunol. 2016;138:1639–1651. doi: 10.1016/j.jaci.2016.07.013. [DOI] [PubMed] [Google Scholar]
- European Medicines Agency Adtralza. 2021. https://www.ema.europa.eu/en/documents/product-information/adtralza-epar-product-information_en.pdf [EPAR: product information]
- European Medicines Agency Dupixent (dupilumab) 2021. https://www.ema.europa.eu/en/documents/product-information/dupixent-epar-product-information_en.pdf [EPAR: product Information]
- Ewald D.A., Malajian D., Krueger J.G., Workman C.T., Wang T., Tian S., et al. Meta-analysis derived atopic dermatitis (MADAD) transcriptome defines a robust AD signature highlighting the involvement of atherosclerosis and lipid metabolism pathways. BMC Med Genomics. 2015;8:60. doi: 10.1186/s12920-015-0133-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eyerich S., Eyerich K., Pennino D., Carbone T., Nasorri F., Pallotta S., et al. Th22 cells represent a distinct human T cell subset involved in epidermal immunity and remodeling. J Clin Invest. 2009;119:3573–3585. doi: 10.1172/JCI40202. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Feld M., Garcia R., Buddenkotte J., Katayama S., Lewis K., Muirhead G., et al. The pruritus- and TH2-associated cytokine IL-31 promotes growth of sensory nerves. J Allergy Clin Immunol. 2016;138:500–508.e24. doi: 10.1016/j.jaci.2016.02.020. [DOI] [PubMed] [Google Scholar]
- Fernandez K., Asad S., Taylan F., Wahlgren C.F., Bilcha K.D., Nordenskjöld M., et al. Intragenic copy number variation in the filaggrin gene in Ethiopian patients with atopic dermatitis. Pediatr Dermatol. 2017;34:e140–e141. doi: 10.1111/pde.13095. [DOI] [PubMed] [Google Scholar]
- Feuillie C., Vitry P., McAleer M.A., Kezic S., Irvine A.D., Geoghegan J.A., et al. Adhesion of Staphylococcus aureus to corneocytes from atopic dermatitis patients is controlled by natural moisturizing factor levels. mBio. 2018;9 doi: 10.1128/mBio.01184-18. e01184-18. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fichtner-Feigl S., Strober W., Kawakami K., Puri R.K., Kitani A. IL-13 signaling through the IL-13alpha2 receptor is involved in induction of TGF-beta1 production and fibrosis. Nat Med. 2006;12:99–106. doi: 10.1038/nm1332. [DOI] [PubMed] [Google Scholar]
- Finkelman F.D., Katona I.M., Urban J.F., Holmes J., Ohara J., Tung A.S., et al. IL-4 is required to generate and sustain in vivo IgE responses. J Immunol. 1988;141:2335–2341. [PubMed] [Google Scholar]
- Flohr C., England K., Radulovic S., McLean W.H.I., Campbel L.E., Barker J., et al. Filaggrin loss-of-function mutations are associated with early-onset eczema, eczema severity and transepidermal water loss at 3 months of age. Br J Dermatol. 2010;163:1333–1336. doi: 10.1111/j.1365-2133.2010.10068.x. [DOI] [PubMed] [Google Scholar]
- Fu D.J., Thomson C., Lunny D.P., Dopping-Hepenstal P.J., McGrath J.A., Smith F.J.D., et al. Keratin 9 is required for the structural integrity and terminal differentiation of the palmoplantar epidermis. J Invest Dermatol. 2014;134:754–763. doi: 10.1038/jid.2013.356. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fuchs E., Green H. Changes in keratin gene expression during terminal differentiation of the keratinocyte. Cell. 1980;19:1033–1042. doi: 10.1016/0092-8674(80)90094-x. [DOI] [PubMed] [Google Scholar]
- Fulton R.L., Margolis D.J., Sockler P.G., Mitra N., Wong X.F.C.C., Common J.E. No association of filaggrin copy number variation and atopic dermatitis risk in White and Black Americans. Exp Dermatol. 2022;31:233–236. doi: 10.1111/exd.14449. [DOI] [PubMed] [Google Scholar]
- Furuse M., Fujita K., Hiiragi T., Fujimoto K., Tsukita S. Claudin-1 and -2: novel integral membrane proteins localizing at tight junctions with no sequence similarity to occludin. J Cell Biol. 1998;141:1539–1550. doi: 10.1083/jcb.141.7.1539. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Furuse M., Hata M., Furuse K., Yoshida Y., Haratake A., Sugitani Y., et al. Claudin-based tight junctions are crucial for the mammalian epidermal barrier: a lesson from claudin-1-deficient mice. J Cell Biol. 2002;156:1099–1111. doi: 10.1083/jcb.200110122. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Furuse M., Hirase T., Itoh M., Nagafuchi A., Yonemura S., Tsukita S., et al. Occludin: a novel integral membrane protein localizing at tight junctions. J Cell Biol. 1993;123:1777–1788. doi: 10.1083/jcb.123.6.1777. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fyhrquist N., Muirhead G., Prast-Nielsen S., Jeanmougin M., Olah P., Skoog T., et al. Microbe-host interplay in atopic dermatitis and psoriasis. Nat Commun. 2019;10:4703. doi: 10.1038/s41467-019-12253-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gandhi N.A., Bennett B.L., Graham N.M.H., Pirozzi G., Stahl N., Yancopoulos G.D. Targeting key proximal drivers of type 2 inflammation in disease. Nat Rev Drug Discov. 2016;15:35–50. doi: 10.1038/nrd4624. [DOI] [PubMed] [Google Scholar]
- Gao P.S., Rafaels N.M., Hand T., Murray T., Boguniewicz M., Hata T., et al. Filaggrin mutations that confer risk of atopic dermatitis confer greater risk for eczema herpeticum. J Allergy Clin Immunol. 2009;124 doi: 10.1016/j.jaci.2009.07.034. 507–513, 513.e1–7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gascan H., Gauchat J.F., Roncarolo M.G., Yssel H., Spits H., de Vries J.E. Human B cell clones can be induced to proliferate and to switch to IgE and IgG4 synthesis by interleukin 4 and a signal provided by activated CD4+ T cell clones. J Exp Med. 1991;173:747–750. doi: 10.1084/jem.173.3.747. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gillery P., Fertin C., Nicolas J.F., Chastang F., Kalis B., Banchereau J., et al. Interleukin-4 stimulates collagen gene expression in human fibroblast monolayer cultures. Potential role in fibrosis. FEBS Lett. 1992;302:231–234. doi: 10.1016/0014-5793(92)80448-p. [DOI] [PubMed] [Google Scholar]
- Gittler J.K., Shemer A., Suárez-Fariñas M., Fuentes-Duculan J., Gulewicz K.J., Wang C.Q.F., et al. Progressive activation of T(H)2/T(H)22 cytokines and selective epidermal proteins characterizes acute and chronic atopic dermatitis. J Allergy Clin Immunol. 2012;130:1344–1354. doi: 10.1016/j.jaci.2012.07.012. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Giustizieri M.L., Mascia F., Frezzolini A., De Pità O., Chinni L.M., Giannetti A., et al. Keratinocytes from patients with atopic dermatitis and psoriasis show a distinct chemokine production profile in response to T cell-derived cytokines. J Allergy Clin Immunol. 2001;107:871–877. doi: 10.1067/mai.2001.114707. [DOI] [PubMed] [Google Scholar]
- Glatzer F., Gschwandtner M., Ehling S., Rossbach K., Janik K., Klos A., et al. Histamine induces proliferation in keratinocytes from patients with atopic dermatitis through the histamine 4 receptor. J Allergy Clin Immunol. 2013;132:1358–1367. doi: 10.1016/j.jaci.2013.06.023. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goleva E., Berdyshev E., Leung D.Y.M. Epithelial barrier repair and prevention of allergy. J Clin Invest. 2019;129:1463–1474. doi: 10.1172/JCI124608. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gould H.J., Takhar P., Harries H.E., Chevretton E., Sutton B.J. The allergic march from Staphylococcus aureus superantigens to immunoglobulin. E. Chem Immunol Allergy. 2007;93:106–136. doi: 10.1159/000100861. [DOI] [PubMed] [Google Scholar]
- Grice E.A., Kong H.H., Conlan S., Deming C.B., Davis J., Young A.C., et al. Topographical and temporal diversity of the human skin microbiome. Science. 2009;324:1190–1192. doi: 10.1126/science.1171700. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Groneberg D.A., Bester C., Grützkau A., Serowka F., Fischer A., Henz B.M., et al. Mast cells and vasculature in atopic dermatitis—potential stimulus of neoangiogenesis. Allergy. 2005;60:90–97. doi: 10.1111/j.1398-9995.2004.00628.x. [DOI] [PubMed] [Google Scholar]
- Gros E., Bussmann C., Bieber T., Förster I.N.N., Novak N. Expression of chemokines and chemokine receptors in lesional and nonlesional upper skin of patients with atopic dermatitis. J Allergy Clin Immunol. 2009;124:753–760.e1. doi: 10.1016/j.jaci.2009.07.004. [DOI] [PubMed] [Google Scholar]
- Gruber R., Börnchen C., Rose K., Daubmann A., Volksdorf T., Wladykowski E., et al. Diverse regulation of claudin-1 and claudin-4 in atopic dermatitis. Am J Pathol. 2015;185:2777–2789. doi: 10.1016/j.ajpath.2015.06.021. [DOI] [PubMed] [Google Scholar]
- Gschwandtner M., Mildner M., Mlitz V., Gruber F., Eckhart L., Werfel T., et al. Histamine suppresses epidermal keratinocyte differentiation and impairs skin barrier function in a human skin model. Allergy. 2013;68:37–47. doi: 10.1111/all.12051. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guseva D., Rüdrich U., Kotnik N., Gehring M., Patsinakidis N., Agelopoulos K., et al. Neuronal branching of sensory neurons is associated with BDNF-positive eosinophils in atopic dermatitis. Clin Exp Allergy. 2020;50:577–584. doi: 10.1111/cea.13560. [DOI] [PubMed] [Google Scholar]
- Gutowska-Owsiak D., Schaupp A.L., Salimi M., Selvakumar T.A., McPherson T., Taylor S., et al. IL-17 downregulates filaggrin and affects keratinocyte expression of genes associated with cellular adhesion. Exp Dermatol. 2012;21:104–110. doi: 10.1111/j.1600-0625.2011.01412.x. [DOI] [PubMed] [Google Scholar]
- Gutowska-Owsiak D., Schaupp A.L., Salimi M., Taylor S., Ogg G.S. Interleukin-22 downregulates filaggrin expression and affects expression of profilaggrin processing enzymes. Br J Dermatol. 2011;165:492–498. doi: 10.1111/j.1365-2133.2011.10400.x. [DOI] [PubMed] [Google Scholar]
- Guttman-Yassky E., Bissonnette R., Ungar B., Suárez-Fariñas M., Ardeleanu M., Esaki H., et al. Dupilumab progressively improves systemic and cutaneous abnormalities in patients with atopic dermatitis. J Allergy Clin Immunol. 2019;143:155–172. doi: 10.1016/j.jaci.2018.08.022. [DOI] [PubMed] [Google Scholar]
- Guttman-Yassky E., Pavel A.B., Zhou L., Estrada Y.D., Zhang N., Xu H., et al. GBR 830, an anti-OX40, improves skin gene signatures and clinical scores in patients with atopic dermatitis. J Allergy Clin Immunol. 2019;144:482–493.e7. doi: 10.1016/j.jaci.2018.11.053. [DOI] [PubMed] [Google Scholar]
- Guttman-Yassky E., Suárez-Fariñas M., Chiricozzi A., Nograles K.E., Shemer A., Fuentes-Duculan J., et al. Broad defects in epidermal cornification in atopic dermatitis identified through genomic analysis. J Allergy Clin Immunol. 2009;124:1235–1244.e58. doi: 10.1016/j.jaci.2009.09.031. [DOI] [PubMed] [Google Scholar]
- Hachem J.P., Crumrine D., Fluhr J., Brown B.E., Feingold K.R., Elias P.M. pH directly regulates epidermal permeability barrier homeostasis, and stratum corneum integrity/cohesion. J Invest Dermatol. 2003;121:345–353. doi: 10.1046/j.1523-1747.2003.12365.x. [DOI] [PubMed] [Google Scholar]
- Hachem J.P., Houben E., Crumrine D., Man M.Q., Schurer N., Roelandt T., et al. Serine protease signaling of epidermal permeability barrier homeostasis. J Invest Dermatol. 2006;126:2074–2086. doi: 10.1038/sj.jid.5700351. [DOI] [PubMed] [Google Scholar]
- Hachem J.P., Man M.Q., Crumrine D., Uchida Y., Brown B.E., Rogiers V., et al. Sustained serine proteases activity by prolonged increase in pH leads to degradation of lipid processing enzymes and profound alterations of barrier function and stratum corneum integrity. J Invest Dermatol. 2005;125:510–520. doi: 10.1111/j.0022-202X.2005.23838.x. [DOI] [PubMed] [Google Scholar]
- Halim T.Y.F., Rana B.M.J., Walker J.A., Kerscher B., Knolle M.D., Jolin H.E., et al. Tissue-restricted adaptive type 2 immunity is orchestrated by expression of the costimulatory molecule OX40L on group 2 innate lymphoid cells. Immunity. 2018;48:1195–1207.e6. doi: 10.1016/j.immuni.2018.05.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hamid Q., Boguniewicz M., Leung D.Y. Differential in situ cytokine gene expression in acute versus chronic atopic dermatitis. J Clin Invest. 1994;94:870–876. doi: 10.1172/JCI117408. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hamid Q., Naseer T., Minshall E.M., Song Y.L., Boguniewicz M., Leung D.Y. In vivo expression of IL-12 and IL-13 in atopic dermatitis. J Allergy Clin Immunol. 1996;98:225–231. doi: 10.1016/s0091-6749(96)70246-4. [DOI] [PubMed] [Google Scholar]
- Hamilton J.D., Harel S., Swanson B.N., Brian W., Chen Z., Rice M.S., et al. Dupilumab suppresses type 2 inflammatory biomarkers across multiple atopic, allergic diseases. Clin Exp Allergy. 2021;51:915–931. doi: 10.1111/cea.13954. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hamilton J.D., Suárez-Fariñas M., Dhingra N., Cardinale I., Li X., Kostic A., et al. Dupilumab improves the molecular signature in skin of patients with moderate-to-severe atopic dermatitis. J Allergy Clin Immunol. 2014;134:1293–1300. doi: 10.1016/j.jaci.2014.10.013. [DOI] [PubMed] [Google Scholar]
- Hardman C.S., Chen Y.L., Salimi M., Jarrett R., Johnson D., Järvinen V.J., et al. CD1a presentation of endogenous antigens by group 2 innate lymphoid cells. Sci Immunol. 2017;2 doi: 10.1126/sciimmunol.aan5918. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harper J.I., Godwin H., Green A., Wilkes L.E., Holden N.J., Moffatt M., et al. A study of matrix metalloproteinase expression and activity in atopic dermatitis using a novel skin wash sampling assay for functional biomarker analysis. Br J Dermatol. 2010;162:397–403. doi: 10.1111/j.1365-2133.2009.09467.x. [DOI] [PubMed] [Google Scholar]
- Hashimoto Y., Takaoka A., Sugimoto M., Honma Y., Sakurai T., Futaki N., et al. Itch-associated scratching contributes to the development of dermatitis and hyperimmunoglobulinaemia E in NC/Nga mice. Exp Dermatol. 2011;20:820–825. doi: 10.1111/j.1600-0625.2011.01337.x. [DOI] [PubMed] [Google Scholar]
- Hatano Y., Terashi H., Arakawa S., Katagiri K. Interleukin-4 suppresses the enhancement of ceramide synthesis and cutaneous permeability barrier functions induced by tumor necrosis factor-alpha and interferon-gamma in human epidermis. J Invest Dermatol. 2005;124:786–792. doi: 10.1111/j.0022-202X.2005.23651.x. [DOI] [PubMed] [Google Scholar]
- Helfrich I., Schmitz A., Zigrino P., Michels C., Haase I., le Bivic A., et al. Role of aPKC isoforms and their binding partners Par3 and Par6 in epidermal barrier formation. J Invest Dermatol. 2007;127:782–791. doi: 10.1038/sj.jid.5700621. [DOI] [PubMed] [Google Scholar]
- Henehan M., De Benedetto A. Update on protease-activated receptor 2 in cutaneous barrier, differentiation, tumorigenesis and pigmentation, and its role in related dermatologic diseases. Exp Dermatol. 2019;28:877–885. doi: 10.1111/exd.13936. [DOI] [PubMed] [Google Scholar]
- Higaki S., Morohashi M., Yamagishi T., Hasegawa Y. Comparative study of staphylococci from the skin of atopic dermatitis patients and from healthy subjects. Int J Dermatol. 1999;38:265–269. doi: 10.1046/j.1365-4362.1999.00686.x. [DOI] [PubMed] [Google Scholar]
- Hiragun T., Hiragun M., Ishii K., Kan T., Hide M. Sweat allergy: extrinsic or intrinsic? J Dermatol Sci. 2017;87:3–9. doi: 10.1016/j.jdermsci.2017.03.002. [DOI] [PubMed] [Google Scholar]
- Hiragun T., Ishii K., Hiragun M., Suzuki H., Kan T., Mihara S., et al. Fungal protein MGL_1304 in sweat is an allergen for atopic dermatitis patients. J Allergy Clin Immunol. 2013;132:608–615.e4. doi: 10.1016/j.jaci.2013.03.047. [DOI] [PubMed] [Google Scholar]
- Hohl D., Mehrel T., Lichti U., Turner M.L., Roop D.R., Steinert P.M. Characterization of human loricrin. Structure and function of a new class of epidermal cell envelope proteins. J Biol Chem. 1991;266:6626–6636. [PubMed] [Google Scholar]
- Homberg M., Magin T.M. Beyond expectations: novel insights into epidermal keratin function and regulation. Int Rev Cell Mol Biol. 2014;311:265–306. doi: 10.1016/B978-0-12-800179-0.00007-6. [DOI] [PubMed] [Google Scholar]
- Homey B., Steinhoff M., Ruzicka T., Leung D.Y.M. Cytokines and chemokines orchestrate atopic skin inflammation. J Allergy Clin Immunol. 2006;118:178–189. doi: 10.1016/j.jaci.2006.03.047. [DOI] [PubMed] [Google Scholar]
- Hönzke S., Wallmeyer L., Ostrowski A., Radbruch M., Mundhenk L., Schäfer-Korting M., et al. Influence of Th2 cytokines on the cornified envelope, tight junction proteins, and β-defensins in filaggrin-deficient skin equivalents. J Invest Dermatol. 2016;136:631–639. doi: 10.1016/j.jid.2015.11.007. [DOI] [PubMed] [Google Scholar]
- Hoste E., Kemperman P., Devos M., Denecker G., Kezic S., Yau N., et al. Caspase-14 is required for filaggrin degradation to natural moisturizing factors in the skin. J Invest Dermatol. 2011;131:2233–2241. doi: 10.1038/jid.2011.153. [DOI] [PubMed] [Google Scholar]
- Howell M.D., Fairchild H.R., Kim B.E., Bin L., Boguniewicz M., Redzic J.S., et al. Th2 cytokines act on S100/A11 to downregulate keratinocyte differentiation. J Invest Dermatol. 2008;128:2248–2258. doi: 10.1038/jid.2008.74. [DOI] [PubMed] [Google Scholar]
- Howell M.D., Kim B.E., Gao P., Grant A.V., Boguniewicz M., Debenedetto A., et al. Cytokine modulation of atopic dermatitis filaggrin skin expression. J Allergy Clin Immunol. 2007;120:150–155. doi: 10.1016/j.jaci.2007.04.031. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Howell M.D., Kim B.E., Gao P., Grant A.V., Boguniewicz M., DeBenedetto A., et al. Cytokine modulation of atopic dermatitis filaggrin skin expression. J Allergy Clin Immunol. 2009;124:R7–R12. doi: 10.1016/j.jaci.2009.07.012. [DOI] [PubMed] [Google Scholar]
- Hu X.Q., Tang Y., Ju Y., Zhang X.Y., Yan J.J., Wang C.M., et al. Scratching damages tight junctions through the Akt-claudin 1 axis in atopic dermatitis. Clin Exp Dermatol. 2021;46:74–81. doi: 10.1111/ced.14380. [DOI] [PubMed] [Google Scholar]
- Hülpüsch C., Tremmel K., Hammel G., Bhattacharyya M., de Tomassi A., Nussbaumer T., et al. Skin pH-dependent Staphylococcus aureus abundance as predictor for increasing atopic dermatitis severity. Allergy. 2020;75:2888–2898. doi: 10.1111/all.14461. [DOI] [PubMed] [Google Scholar]
- Hvid M., Vestergaard C., Kemp K., Christensen G.B., Deleuran B., Deleuran M. IL-25 in atopic dermatitis: a possible link between inflammation and skin barrier dysfunction? J Invest Dermatol. 2011;131:150–157. doi: 10.1038/jid.2010.277. [DOI] [PubMed] [Google Scholar]
- Imai Y., Yasuda K., Sakaguchi Y., Futatsugi-Yumikura S., Yoshimoto T., Nakanishi K., et al. Immediate-type contact hypersensitivity is reduced in interleukin-33 knockout mice. J Dermatol Sci. 2014;74:159–161. doi: 10.1016/j.jdermsci.2014.01.009. [DOI] [PubMed] [Google Scholar]
- Imai Y., Yasuda K., Sakaguchi Y., Haneda T., Mizutani H., Yoshimoto T., et al. Skin-specific expression of IL-33 activates group 2 innate lymphoid cells and elicits atopic dermatitis–like inflammation in mice. Proc Natl Acad Sci USA. 2013;110:13921–13926. doi: 10.1073/pnas.1307321110. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Imayama S., Shimozono Y., Hoashi M., Yasumoto S., Ohta S., Yoneyama K., et al. Reduced secretion of IgA to skin surface of patients with atopic dermatitis. J Allergy Clin Immunol. 1994;94:195–200. doi: 10.1016/0091-6749(94)90040-x. [DOI] [PubMed] [Google Scholar]
- Imokawa G., Abe A., Jin K., Higaki Y., Kawashima M., Hidano A. Decreased level of ceramides in stratum corneum of atopic dermatitis: an etiologic factor in atopic dry skin? J Invest Dermatol. 1991;96:523–526. doi: 10.1111/1523-1747.ep12470233. [DOI] [PubMed] [Google Scholar]
- Irvine A.D., Mina-Osorio P. Disease trajectories in childhood atopic dermatitis: an update and practitioner’s guide. Br J Dermatol. 2019;181:895–906. doi: 10.1111/bjd.17766. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ito T., Wang Y.H., Duramad O., Hori T., Delespesse G.J., Watanabe N., et al. TSLP-activated dendritic cells induce an inflammatory T helper type 2 cell response through OX40 ligand. J Exp Med. 2005;202:1213–1223. doi: 10.1084/jem.20051135. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Izuhara K., Arima K., Yasunaga S. IL-4 and IL-13: their pathological roles in allergic diseases and their potential in developing new therapies. Curr Drug Targets Inflamm Allergy. 2002;1:263–269. doi: 10.2174/1568010023344661. [DOI] [PubMed] [Google Scholar]
- Janssens M., van Smeden J., Gooris G.S., Bras W., Portale G., Caspers P.J., et al. Increase in short-chain ceramides correlates with an altered lipid organization and decreased barrier function in atopic eczema patients. J Lipid Res. 2012;53:2755–2766. doi: 10.1194/jlr.P030338. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jarnik M., de Viragh P.A., Schärer E., Bundman D., Simon M.N., Roop D.R., et al. Quasi-normal cornified cell envelopes in loricrin knockout mice imply the existence of a loricrin backup system. J Invest Dermatol. 2002;118:102–109. doi: 10.1046/j.0022-202x.2001.01661.x. [DOI] [PubMed] [Google Scholar]
- Jarrett R., Salio M., Lloyd-Lavery A., Subramaniam S., Bourgeois E., Archer C., et al. Filaggrin inhibits generation of CD1a neolipid antigens by house dust mite-derived phospholipase. Sci Transl Med. 2016;8:325ra18. doi: 10.1126/scitranslmed.aad6833. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jensen J.M., Ahrens K., Meingassner J., Scherer A., Bräutigam M., Stütz A., et al. Differential suppression of epidermal antimicrobial protein expression in atopic dermatitis and in EFAD mice by pimecrolimus compared to corticosteroids. Exp Dermatol. 2011;20:783–788. doi: 10.1111/j.1600-0625.2011.01322.x. [DOI] [PubMed] [Google Scholar]
- Jensen J.M., Pfeiffer S., Witt M., Bräutigam M., Neumann C., Weichenthal M., et al. Different effects of pimecrolimus and betamethasone on the skin barrier in patients with atopic dermatitis. J Allergy Clin Immunol. 2009;123:1124–1133. doi: 10.1016/j.jaci.2009.03.032. [published correction appears in J Allergy Clin Immunol 2009;124:1038] [DOI] [PubMed] [Google Scholar]
- Jensen J.M., Scherer A., Wanke C., Bräutigam M., Bongiovanni S., Letzkus M., et al. Gene expression is differently affected by pimecrolimus and betamethasone in lesional skin of atopic dermatitis. Allergy. 2012;67:413–423. doi: 10.1111/j.1398-9995.2011.02747.x. [DOI] [PubMed] [Google Scholar]
- Jensen J.M., Weppner M., Dähnhardt-Pfeiffer S., Neumann C., Bräutigam M., Schwarz T., et al. Effects of pimecrolimus compared with triamcinolone acetonide cream on skin barrier structure in atopic dermatitis: a randomized, double-blind, right–left arm trial. Acta Derm Venereol. 2013;93:515–519. doi: 10.2340/00015555-1533. [DOI] [PubMed] [Google Scholar]
- Jeong S.K., Kim H.J., Youm J.K., Ahn S.K., Choi E.H., Sohn M.H., et al. Mite and cockroach allergens activate protease-activated receptor 2 and delay epidermal permeability barrier recovery. J Invest Dermatol. 2008;128:1930–1939. doi: 10.1038/jid.2008.13. [DOI] [PubMed] [Google Scholar]
- Jessup H.K., Brewer A.W., Omori M., Rickel E.A., Budelsky A.L., Yoon B.R., et al. Intradermal administration of thymic stromal lymphopoietin induces a T cell- and eosinophil-dependent systemic Th2 inflammatory response. J Immunol. 2008;181:4311–4319. doi: 10.4049/jimmunol.181.6.4311. [DOI] [PubMed] [Google Scholar]
- Jiang W., Sunkara L.T., Zeng X., Deng Z., Myers S.M., Zhang G. Differential regulation of human cathelicidin LL-37 by free fatty acids and their analogs. Peptides. 2013;50:129–138. doi: 10.1016/j.peptides.2013.10.008. [DOI] [PubMed] [Google Scholar]
- Kato T., Takai T., Fujimura T., Matsuoka H., Ogawa T., Murayama K., et al. Mite serine protease activates protease-activated receptor-2 and induces cytokine release in human keratinocytes. Allergy. 2009;64:1366–1374. doi: 10.1111/j.1398-9995.2009.02023.x. [DOI] [PubMed] [Google Scholar]
- Katoh N., Ohya Y., Ikeda M., Ebihara T., Katayama I., Saeki H., et al. Japanese guidelines for atopic dermatitis 2020. Allergol Int. 2020;69:356–369. doi: 10.1016/j.alit.2020.02.006. [DOI] [PubMed] [Google Scholar]
- Kaviratne M., Hesse M., Leusink M., Cheever A.W., Davies S.J., McKerrow J.H., et al. IL-13 activates a mechanism of tissue fibrosis that is completely TGF-beta independent. J Immunol. 2004;173:4020–4029. doi: 10.4049/jimmunol.173.6.4020. [DOI] [PubMed] [Google Scholar]
- Kawasaki H., Nagao K., Kubo A., Hata T., Shimizu A., Mizuno H., et al. Altered stratum corneum barrier and enhanced percutaneous immune responses in filaggrin-null mice. J Allergy Clin Immunol. 2012;129:1538–1546.e6. doi: 10.1016/j.jaci.2012.01.068. [DOI] [PubMed] [Google Scholar]
- Kezic S., Kemperman P.M.J.H., Koster E.S., de Jongh C.M., Thio H.B., Campbell L.E., et al. Loss-of-function mutations in the filaggrin gene lead to reduced level of natural moisturizing factor in the stratum corneum. J Invest Dermatol. 2008;128:2117–2119. doi: 10.1038/jid.2008.29. [published correction appears in J Invest Dermatol 2008;128:1604] [DOI] [PubMed] [Google Scholar]
- Kezic S., O’Regan G.M., Yau N., Sandilands A., Chen H., Campbell L.E., et al. Levels of filaggrin degradation products are influenced by both filaggrin genotype and atopic dermatitis severity. Allergy. 2011;66:934–940. doi: 10.1111/j.1398-9995.2010.02540.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kezic S., O'Regan G.M., Lutter R., Jakasa I., Koster E.S., Saunders S., et al. Filaggrin loss-of-function mutations are associated with enhanced expression of IL-1 cytokines in the stratum corneum of patients with atopic dermatitis and in a murine model of filaggrin deficiency. J Allergy Clin Immunol. 2012;129:1031–1039.e1. doi: 10.1016/j.jaci.2011.12.989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kiatsurayanon C., Niyonsaba F., Smithrithee R., Akiyama T., Ushio H., Hara M., et al. Host defense (antimicrobial) peptide, human β-defensin-3, improves the function of the epithelial tight-junction barrier in human keratinocytes. J Invest Dermatol. 2014;134:2163–2173. doi: 10.1038/jid.2014.143. [DOI] [PubMed] [Google Scholar]
- Kim B.E., Howell M.D., Guttman-Yassky E., Gilleaudeau P.M., Cardinale I.R., Boguniewicz M., et al. TNF-α downregulates filaggrin and loricrin through c-Jun N-terminal kinase: role for TNF-α antagonists to improve skin barrier. J Invest Dermatol. 2011;131:1272–1279. doi: 10.1038/jid.2011.24. [published correction appears in J Invest Dermatol 2011;131:1388] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kim B.E., Leung D.Y.M., Boguniewicz M., Howell M.D. Loricrin and involucrin expression is down-regulated by Th2 cytokines through STAT-6. Clin Immunol. 2008;126:332–337. doi: 10.1016/j.clim.2007.11.006. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kim B.S., Wang K., Siracusa M.C., Saenz S.A., Brestoff J.R., Monticelli L.A., et al. Basophils promote innate lymphoid cell responses in inflamed skin. J Immunol. 2014;193:3717–3725. doi: 10.4049/jimmunol.1401307. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kim J.H., Bae H.C., Ko N.Y., Lee S.H., Jeong S.H., Lee H., et al. Thymic stromal lymphopoietin downregulates filaggrin expression by signal transducer and activator of transcription 3 (STAT3) and extracellular signal-regulated kinase (ERK) phosphorylation in keratinocytes. J Allergy Clin Immunol. 2015;136:205–208.e9. doi: 10.1016/j.jaci.2015.04.026. [DOI] [PubMed] [Google Scholar]
- Kirschner N., Houdek P., Fromm M., Moll I., Brandner J.M. Tight junctions form a barrier in human epidermis. Eur J Cell Biol. 2010;89:839–842. doi: 10.1016/j.ejcb.2010.07.010. [DOI] [PubMed] [Google Scholar]
- Kirschner N., Rosenthal R., Furuse M., Moll I., Fromm M., Brandner J.M. Contribution of tight junction proteins to ion, macromolecule, and water barrier in keratinocytes. J Invest Dermatol. 2013;133:1161–1169. doi: 10.1038/jid.2012.507. [DOI] [PubMed] [Google Scholar]
- Kobayashi T., Glatz M., Horiuchi K., Kawasaki H., Akiyama H., Kaplan D.H., et al. Dysbiosis and Staphylococcus aureus colonization drives inflammation in atopic dermatitis. Immunity. 2015;42:756–766. doi: 10.1016/j.immuni.2015.03.014. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kolodsick J.E., Toews G.B., Jakubzick C., Hogaboam C., Moore T.A., McKenzie A., et al. Protection from fluorescein isothiocyanate-induced fibrosis in IL-13-deficient, but not IL-4-deficient, mice results from impaired collagen synthesis by fibroblasts. J Immunol. 2004;172:4068–4076. doi: 10.4049/jimmunol.172.7.4068. [DOI] [PubMed] [Google Scholar]
- Komatsu N., Saijoh K., Kuk C., Liu A.C., Khan S., Shirasaki F., et al. Human tissue kallikrein expression in the stratum corneum and serum of atopic dermatitis patients. Exp Dermatol. 2007;16:513–519. doi: 10.1111/j.1600-0625.2007.00562.x. [DOI] [PubMed] [Google Scholar]
- Kong H.H., Oh J., Deming C., Conlan S., Grice E.A., Beatson M.A., et al. Temporal shifts in the skin microbiome associated with disease flares and treatment in children with atopic dermatitis. Genome Res. 2012;22:850–859. doi: 10.1101/gr.131029.111. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kouklis P.D., Hutton E., Fuchs E. Making a connection: direct binding between keratin intermediate filaments and desmosomal proteins. J Cell Biol. 1994;127:1049–1060. doi: 10.1083/jcb.127.4.1049. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Krien P.M., Kermici M. Evidence for the existence of a self-regulated enzymatic process within the human stratum corneum – an unexpected role for urocanic acid. J Invest Dermatol. 2000;115:414–420. doi: 10.1046/j.1523-1747.2000.00083.x. [DOI] [PubMed] [Google Scholar]
- Kubo A., Nagao K., Yokouchi M., Sasaki H., Amagai M. External antigen uptake by Langerhans cells with reorganization of epidermal tight junction barriers. J Exp Med. 2009;206:2937–2946. doi: 10.1084/jem.20091527. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kumar V., Bouameur J.E., Bär J., Rice R.H., Hornig-Do H.T., Roop D.R., et al. A keratin scaffold regulates epidermal barrier formation, mitochondrial lipid composition, and activity. J Cell Biol. 2015;211:1057–1075. doi: 10.1083/jcb.201404147. [published correction appears in J Cell Biol 2016;212:877] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kuo I.H., Carpenter-Mendini A., Yoshida T., McGirt L.Y., Ivanov A.I., Barnes K.C., et al. Activation of epidermal toll-like receptor 2 enhances tight junction function: implications for atopic dermatitis and skin barrier repair. J Invest Dermatol. 2013;133:988–998. doi: 10.1038/jid.2012.437. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lai Y., Cogen A.L., Radek K.A., Park H.J., Macleod D.T., Leichtle A., et al. Activation of TLR2 by a small molecule produced by Staphylococcus epidermidis increases antimicrobial defense against bacterial skin infections. J Invest Dermatol. 2010;130:2211–2221. doi: 10.1038/jid.2010.123. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Le Floc’h A., Allinne J., Nagashima K., Scott G., Birchard D., Asrat S., et al. Dual blockade of IL-4 and IL-13 with dupilumab, an IL-4Rα antibody, is required to broadly inhibit type 2 inflammation. Allergy. 2020;75:1188–1204. doi: 10.1111/all.14151. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee C.H., Coulombe P.A. Self-organization of keratin intermediate filaments into cross-linked networks. J Cell Biol. 2009;186:409–421. doi: 10.1083/jcb.200810196. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee D.Y., Yamasaki K., Rudsil J., Zouboulis C.C., Park G.T., Yang J.M., et al. Sebocytes express functional cathelicidin antimicrobial peptides and can act to kill propionibacterium acnes. J Invest Dermatol. 2008;128:1863–1866. doi: 10.1038/sj.jid.5701235. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lessard J.C., Piña-Paz S., Rotty J.D., Hickerson R.P., Kaspar R.L., Balmain A., et al. Keratin 16 regulates innate immunity in response to epidermal barrier breach. Proc Natl Acad Sci USA. 2013;110:19537–19542. doi: 10.1073/pnas.1309576110. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leung D.Y., Harbeck R., Bina P., Reiser R.F., Yang E., Norris D.A., et al. Presence of IgE antibodies to staphylococcal exotoxins on the skin of patients with atopic dermatitis. Evidence for a new group of allergens. J Clin Invest. 1993;92:1374–1380. doi: 10.1172/JCI116711. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leung D.Y.M., Berdyshev E., Goleva E. Cutaneous barrier dysfunction in allergic diseases. J Allergy Clin Immunol. 2020;145:1485–1497. doi: 10.1016/j.jaci.2020.02.021. [published correction appears in J Allergy Clin Immunol 2021;148:905] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leyva-Castillo J.M., Hener P., Michea P., Karasuyama H., Chan S., Soumelis V., et al. Skin thymic stromal lymphopoietin initiates Th2 responses through an orchestrated immune cascade. Nat Commun. 2013;4:2847. doi: 10.1038/ncomms3847. [DOI] [PubMed] [Google Scholar]
- Leyva-Castillo J.M., McGurk A., Geha M.D.R. Allergic skin inflammation and S. aureus skin colonization are mutually reinforcing. Clin Immunol. 2020;218:108511. doi: 10.1016/j.clim.2020.108511. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li S., Villarreal M., Stewart S., Choi J., Ganguli-Indra G., Babineau D.C., et al. Altered composition of epidermal lipids correlates with Staphylococcus aureus colonization status in atopic dermatitis. Br J Dermatol. 2017;177:e125–e127. doi: 10.1111/bjd.15409. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liang H.E., Reinhardt R.L., Bando J.K., Sullivan B.M., Ho I.C., Locksley R.M. Divergent expression patterns of IL-4 and IL-13 define unique functions in allergic immunity. Nat Immunol. 2011;13:58–66. doi: 10.1038/ni.2182. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lin Y.T., Wang C.T., Hsu C.T., Wang L.F., Shau W.Y., Yang Y.H., et al. Differential susceptibility to Staphylococcal superantigen (SsAg)-induced apoptosis of CD4+ T cells from atopic dermatitis patients and healthy subjects: the inhibitory effect of IL-4 on SsAg-induced apoptosis. J Immunol. 2003;171:1102–1108. doi: 10.4049/jimmunol.171.2.1102. [DOI] [PubMed] [Google Scholar]
- Liu B., Tai Y., Achanta S., Kaelberer M.M., Caceres A.I., Shao X., et al. IL-33/ST2 signaling excites sensory neurons and mediates itch response in a mouse model of poison ivy contact allergy. Proc Natl Acad Sci USA. 2016;113:E7572–E7579. doi: 10.1073/pnas.1606608113. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liu Y., Nusrat A., Schnell F.J., Reaves T.A., Walsh S., Pochet M., et al. Human junction adhesion molecule regulates tight junction resealing in epithelia. J Cell Sci. 2000;113:2363–2374. doi: 10.1242/jcs.113.13.2363. [DOI] [PubMed] [Google Scholar]
- Lou H., Lu J., Choi E.B., Oh M.H., Jeong M., Barmettler S., et al. Expression of IL-22 in the skin causes Th2-biased immunity, epidermal barrier dysfunction, and pruritus via stimulating epithelial Th2 cytokines and the GRP pathway. J Immunol. 2017;198:2543–2555. doi: 10.4049/jimmunol.1600126. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Malhotra N., Yoon J., Leyva-Castillo J.M., Galand C., Archer N., Miller L.S., et al. IL-22 derived from γδ T cells restricts Staphylococcus aureus infection of mechanically injured skin. J Allergy Clin Immunol. 2016;138:1098–1107.e3. doi: 10.1016/j.jaci.2016.07.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Malminen M., Koivukangas V., Peltonen J., Karvonen S.L., Oikarinen A., Peltonen S. Immunohistological distribution of the tight junction components ZO-1 and occludin in regenerating human epidermis. Br J Dermatol. 2003;149:255–260. doi: 10.1046/j.1365-2133.2003.05438.x. [DOI] [PubMed] [Google Scholar]
- Margolis D.J., Apter A.J., Gupta J., Hoffstad O., Papadopoulos M., Campbell L.E., et al. The persistence of atopic dermatitis and filaggrin (FLG) mutations in a US longitudinal cohort. J Allergy Clin Immunol. 2012;130:912–917. doi: 10.1016/j.jaci.2012.07.008. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Masenga J., Garbe C., Wagner J., Orfanos C.E. Staphylococcus aureus in atopic dermatitis and in nonatopic dermatitis. Int J Dermatol. 1990;29:579–582. doi: 10.1111/j.1365-4362.1990.tb03473.x. [DOI] [PubMed] [Google Scholar]
- Mashiko S., Mehta H., Bissonnette R., Sarfati M. Increased frequencies of basophils, type 2 innate lymphoid cells and Th2 cells in skin of patients with atopic dermatitis but not psoriasis. J Dermatol Sci. 2017;88:167–174. doi: 10.1016/j.jdermsci.2017.07.003. [DOI] [PubMed] [Google Scholar]
- McLeod J.J.A., Baker B.N., Ryan J.J. Mast cell production and response to IL-4 and IL-13. Cytokine. 2015;75:57–61. doi: 10.1016/j.cyto.2015.05.019. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Menon G.K., Feingold K.R., Elias P.M. Lamellar body secretory response to barrier disruption. J Invest Dermatol. 1992;98:279–289. doi: 10.1111/1523-1747.ep12497866. [DOI] [PubMed] [Google Scholar]
- Metze D., Kersten A., Jurecka W., Gebhart W. Immunoglobulins coat microorganisms of skin surface: a comparative immunohistochemical and ultrastructural study of cutaneous and oral microbial symbionts. J Invest Dermatol. 1991;96:439–445. doi: 10.1111/1523-1747.ep12469908. [DOI] [PubMed] [Google Scholar]
- Meylan P., Lang C., Mermoud S., Johannsen A., Norrenberg S., Hohl D., et al. Skin colonization by Staphylococcus aureus precedes the clinical diagnosis of atopic dermatitis in infancy. J Invest Dermatol. 2017;137:2497–2504. doi: 10.1016/j.jid.2017.07.834. [DOI] [PubMed] [Google Scholar]
- Miajlovic H., Fallon P.G., Irvine A.D., Foster T.J. Effect of filaggrin breakdown products on growth of and protein expression by Staphylococcus aureus. J Allergy Clin Immunol. 2010;126:1184–1190.e3. doi: 10.1016/j.jaci.2010.09.015. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Michaels A.S., Chandrasekaran S.K., Shaw J.E. Drug permeation through human skin: theory and invitro experimental measurement. AIChE J. 1975;21:985–996. [Google Scholar]
- Mikhaylov D.B.A., Del Duca E., Olesen C.M., He H., Wu J., Ungar B., et al. Transcriptomic profiling of tape-strips from moderate to severe atopic dermatitis patients treated with dupilumab. Dermatitis. 2021;32:S71–S80. doi: 10.1097/DER.0000000000000764. [DOI] [PubMed] [Google Scholar]
- Miller S.J., Aly R., Shinefeld H.R., Elias P.M. In vitro and in vivo antistaphylococcal activity of human stratum corneum lipids. Arch Dermatol. 1988;124:209–215. [PubMed] [Google Scholar]
- Mitamura Y., Murai M., Mitoma C., Furue M. NRF2 activation inhibits both TGF-β1- and IL-13-mediated periostin expression in fibroblasts: benefit of cinnamaldehyde for antifibrotic treatments. Oxid Med Cell Longev. 2018;2018:1–10. doi: 10.1155/2018/2475047. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mitamura Y., Nunomura S., Nanri Y., Ogawa M., Yoshihara T., Masuoka M., et al. The IL-13/periostin/IL-24 pathway causes epidermal barrier dysfunction in allergic skin inflammation. Allergy. 2018;73:1881–1891. doi: 10.1111/all.13437. [DOI] [PubMed] [Google Scholar]
- Möbus L., Rodriguez E., Harder I., Stölzl D., Boraczynski N., Gerdes S., et al. Atopic dermatitis displays stable and dynamic skin transcriptome signatures. J Allergy Clin Immunol. 2021;147:213–223. doi: 10.1016/j.jaci.2020.06.012. [DOI] [PubMed] [Google Scholar]
- Moll R., Divo M., Langbein L. The human keratins: biology and pathology. Histochem Cell Biol. 2008;129:705–733. doi: 10.1007/s00418-008-0435-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moll R., Franke W.W., Schiller D.L., Geiger B., Krepler R. The catalog of human cytokeratins: patterns of expression in normal epithelia, tumors and cultured cells. Cell. 1982;31:11–24. doi: 10.1016/0092-8674(82)90400-7. [DOI] [PubMed] [Google Scholar]
- Morita K., Itoh M., Saitou M., Ando-Akatsuka Y., Furuse M., Yoneda K., et al. Subcellular distribution of tight junction-associated proteins (occludin, ZO-1, ZO-2) in rodent skin. J Invest Dermatol. 1998;110:862–866. doi: 10.1046/j.1523-1747.1998.00209.x. [DOI] [PubMed] [Google Scholar]
- Murakami M., Ohtake T., Dorschner R.A., Schittek B., Garbe C., Gallo R.L. Cathelicidin anti-microbial peptide expression in sweat, an innate defense system for the skin. J Invest Dermatol. 2002;119:1090–1095. doi: 10.1046/j.1523-1747.2002.19507.x. [DOI] [PubMed] [Google Scholar]
- Murota H., Matsui S., Ono E., Kijima A., Kikuta J., Ishii M., et al. Sweat, the driving force behind normal skin: an emerging perspective on functional biology and regulatory mechanisms. J Dermatol Sci. 2015;77:3–10. doi: 10.1016/j.jdermsci.2014.08.011. [DOI] [PubMed] [Google Scholar]
- Murota H., Yamaga K., Ono E., Katayama I. Sweat in the pathogenesis of atopic dermatitis. Allergol Int. 2018;67:455–459. doi: 10.1016/j.alit.2018.06.003. [DOI] [PubMed] [Google Scholar]
- Murthy A., Shao Y.W., Narala S.R., Molyneux S.D., Zúñiga-Pflücker J.C., Khokha R. Notch activation by the metalloproteinase ADAM17 regulates myeloproliferation and atopic barrier immunity by suppressing epithelial cytokine synthesis. Immunity. 2012;36:105–119. doi: 10.1016/j.immuni.2012.01.005. [DOI] [PubMed] [Google Scholar]
- Nadeau P., Henehan M., de Benedetto A. Activation of protease-activated receptor 2 leads to impairment of keratinocyte tight junction integrity. J Allergy Clin Immunol. 2018;142:281–284.e7. doi: 10.1016/j.jaci.2018.01.007. [DOI] [PubMed] [Google Scholar]
- Naik S., Bouladoux N., Wilhelm C., Molloy M.J., Salcedo R., Kastenmuller W., et al. Compartmentalized control of skin immunity by resident commensals. Science. 2012;337:1115–1119. doi: 10.1126/science.1225152. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nakagawa H., Nemoto O., Igarashi A., Saeki H., Kaino H., Nagata T. Delgocitinib ointment, a topical Janus kinase inhibitor, in adult patients with moderate to severe atopic dermatitis: a phase 3, randomized, double-blind, vehicle-controlled study and an open-label, long-term extension study. J Am Acad Dermatol. 2020;82:823–831. doi: 10.1016/j.jaad.2019.12.015. [published correction appears in J Am Acad Dermatol 2021;85:1069] [DOI] [PubMed] [Google Scholar]
- Nakagawa H., Nemoto O., Igarashi A., Saeki H., Oda M., Kabashima K., et al. Phase 2 clinical study of delgocitinib ointment in pediatric patients with atopic dermatitis. J Allergy Clin Immunol. 2019;144:1575–1583. doi: 10.1016/j.jaci.2019.08.004. [published correction appears in J Allergy Clin Immunol 2021;148:1088] [DOI] [PubMed] [Google Scholar]
- Nakamura Y., Oscherwitz J., Cease K.B., Chan S.M., Muñoz-Planillo R., Hasegawa M., et al. Staphylococcus δ-toxin induces allergic skin disease by activating mast cells. Nature. 2013;503:397–401. doi: 10.1038/nature12655. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nakatsuji T., Chen T.H., Narala S., Chun K.A., Two A.M., Yun T., et al. Antimicrobials from human skin commensal bacteria protect against Staphylococcus aureus and are deficient in atopic dermatitis. Sci Transl Med. 2017;9 doi: 10.1126/scitranslmed.aah4680. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nakatsuji T., Chen T.H., Two A.M., Chun K.A., Narala S., Geha R.S., et al. Staphylococcus aureus exploits epidermal barrier defects in atopic dermatitis to trigger cytokine expression. J Invest Dermatol. 2016;136:2192–2200. doi: 10.1016/j.jid.2016.05.127. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nakatsuji T., Kao M.C., Zhang L., Zouboulis C.C., Gallo R.L., Huang C.M. Sebum free fatty acids enhance the innate immune defense of human sebocytes by upregulating beta-defensin-2 expression. J Invest Dermatol. 2010;130:985–994. doi: 10.1038/jid.2009.384. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Neill D.R., Wong S.H., Bellosi A., Flynn R.J., Daly M., Langford T.K.A., et al. Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity. Nature. 2010;464:1367–1370. doi: 10.1038/nature08900. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nilsson G., Nilsson K. Effects of interleukin (IL)-13 on immediate-early response gene expression, phenotype and differentiation of human mast cells. Comparison with IL-4. Eur J Immunol. 1995;25:870–873. doi: 10.1002/eji.1830250337. [DOI] [PubMed] [Google Scholar]
- Nomura I., Goleva E., Howell M.D., Hamid Q.A., Ong P.Y., Hall C.F., et al. Cytokine milieu of atopic dermatitis, as compared to psoriasis, skin prevents induction of innate immune response genes. J Immunol. 2003;171:3262–3269. doi: 10.4049/jimmunol.171.6.3262. [DOI] [PubMed] [Google Scholar]
- Nomura T., Akiyama M., Sandilands A., Nemoto-Hasebe I., Sakai K., Nagasaki A., et al. Specific filaggrin mutations cause ichthyosis vulgaris and are significantly associated with atopic dermatitis in Japan. J Invest Dermatol. 2008;128:1436–1441. doi: 10.1038/sj.jid.5701205. [DOI] [PubMed] [Google Scholar]
- Nylander-Lundqvist E., Egelrud T. Formation of active IL-1 beta from pro-IL-1 beta catalyzed by stratum corneum chymotryptic enzyme in vitro. Acta Derm Venereol. 1997;77:203–206. doi: 10.2340/0001555577203206. [DOI] [PubMed] [Google Scholar]
- Oetjen L.K., Mack M.R., Feng J., Whelan T.M., Niu H., Guo C.J., et al. Sensory neurons co-opt classical immune signaling pathways to mediate chronic itch. Cell. 2017;171:217–228.e13. doi: 10.1016/j.cell.2017.08.006. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oh M.H., Oh S.Y., Lu J., Lou H., Myers A.C., Zhu Z., et al. TRPA1-dependent pruritus in IL-13-induced chronic atopic dermatitis. J Immunol. 2013;191:5371–5382. doi: 10.4049/jimmunol.1300300. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oh M.H., Oh S.Y., Yu J., Myers A.C., Leonard W.J., Liu Y.J., et al. IL-13 induces skin fibrosis in atopic dermatitis by thymic stromal lymphopoietin. J Immunol. 2011;186:7232–7242. doi: 10.4049/jimmunol.1100504. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ohnemus U., Kohrmeyer K., Houdek P., Rohde H., Wladykowski E., Vidal S., et al. Regulation of epidermal tight-junctions (TJ) during infection with exfoliative toxin-negative Staphylococcus strains. J Invest Dermatol. 2008;128:906–916. doi: 10.1038/sj.jid.5701070. [DOI] [PubMed] [Google Scholar]
- Ohno Y., Nakamichi S., Ohkuni A., Kamiyama N., Naoe A., Tsujimura H., et al. Essential role of the cytochrome P450 CYP4F22 in the production of acylceramide, the key lipid for skin permeability barrier formation. Proc Natl Acad Sci USA. 2015;112:7707–7712. doi: 10.1073/pnas.1503491112. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ong P.Y., Ohtake T., Brandt C., Strickland I., Boguniewicz M., Ganz T., et al. Endogenous antimicrobial peptides and skin infections in atopic dermatitis. N Engl J Med. 2002;347:1151–1160. doi: 10.1056/NEJMoa021481. [DOI] [PubMed] [Google Scholar]
- Onoue A., Kabashima K., Kobayashi M., Mori T., Tokura Y. Induction of eosinophil- and Th2-attracting epidermal chemokines and cutaneous late-phase reaction in tape-stripped skin. Exp Dermatol. 2009;18:1036–1043. doi: 10.1111/j.1600-0625.2009.00899.x. [DOI] [PubMed] [Google Scholar]
- Orfali R.L., da Silva Oliveira L.M., de Lima J.F., de Carvalho G.C., Ramos Y.A.L., Pereira N.Z., et al. Staphylococcus aureus enterotoxins modulate IL-22-secreting cells in adults with atopic dermatitis. Sci Rep. 2018;8:6665. doi: 10.1038/s41598-018-25125-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oriente A., Fedarko N.S., Pacocha S.E., Huang S.K., Lichtenstein L.M., Essayan D.M. Interleukin-13 modulates collagen homeostasis in human skin and keloid fibroblasts. J Pharmacol Exp Ther. 2000;292:988–994. [PubMed] [Google Scholar]
- Oyoshi M.K., Larson R.P., Ziegler S.F., Geha R.S. Mechanical injury polarizes skin dendritic cells to elicit a T(H)2 response by inducing cutaneous thymic stromal lymphopoietin expression. J Allergy Clin Immunol. 2010;126 doi: 10.1016/j.jaci.2010.08.041. 976–84, 984.e1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oyoshi M.K., Murphy G.F., Geha R.S. Filaggrin-deficient mice exhibit Th17-dominated skin inflammation and permissiveness to epicutaneous sensitization with protein antigen. J Allergy Clin Immunol. 2009;124 doi: 10.1016/j.jaci.2009.05.042. 485–493, 493.e1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Paller A.S., Tom W.L., Lebwohl M.G., Blumenthal R.L., Boguniewicz M., Call R.S., et al. Efficacy and safety of crisaborole ointment, a novel, nonsteroidal phosphodiesterase 4 (PDE4) inhibitor for the topical treatment of atopic dermatitis (AD) in children and adults. J Am Acad Dermatol. 2016;75:494–503.e6. doi: 10.1016/j.jaad.2016.05.046. [published correction appears in J Am Acad Dermatol 2017;76:777] [DOI] [PubMed] [Google Scholar]
- Palmer C.N., Irvine A.D., Terron-Kwiatkowski A., Zhao Y., Liao H., Lee S.P., et al. Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis. Nat Genet. 2006;38:441–446. doi: 10.1038/ng1767. [DOI] [PubMed] [Google Scholar]
- Palmer C.N., Ismail T., Lee S.P., Terron-Kwiatkowski A., Zhao Y., Liao H., et al. Filaggrin null mutations are associated with increased asthma severity in children and young adults. J Allergy Clin Immunol. 2007;120:64–68. doi: 10.1016/j.jaci.2007.04.001. [DOI] [PubMed] [Google Scholar]
- Papp K., Szepietowski J.C., Kircik L., Toth D., Eichenfield L.F., Leung D.Y.M., et al. Efficacy and safety of ruxolitinib cream for the treatment of atopic dermatitis: results from 2 phase 3, randomized, double-blind studies. J Am Acad Dermatol. 2021;85:863–872. doi: 10.1016/j.jaad.2021.04.085. [DOI] [PubMed] [Google Scholar]
- Park H.Y., Kim C.R., Huh I.S., Jung M.Y., Seo E.Y., Park J.H., et al. Staphylococcus aureus colonization in acute and chronic skin lesions of patients with atopic dermatitis. Ann Dermatol. 2013;25:410–416. doi: 10.5021/ad.2013.25.4.410. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pascolini C., Sinagra J., Pecetta S., Bordignon V., De Santis A., Cilli L., et al. Molecular and immunological characterization of Staphylococcus aureus in pediatric atopic dermatitis: implications for prophylaxis and clinical management. Clin Dev Immunol. 2011;2011:718708. doi: 10.1155/2011/718708. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Paul W.E. History of interleukin-4. Cytokine. 2015;75:3–7. doi: 10.1016/j.cyto.2015.01.038. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pavel A.B., Song T., Kim H.J., Del Duca E., Krueger J.G., Dubin C., et al. Oral Janus kinase/SYC inhibition (ASN002) suppresses inflammation and improves epidermal barrier markers in atopic dermatitis. J Allergy Clin Immunol. 2019;144:1011–1024. doi: 10.1016/j.jaci.2019.07.013. [DOI] [PubMed] [Google Scholar]
- Pavel A.B., Zhou L., Diaz A., Ungar B., Dan J., He H., et al. The proteomic skin profile of moderate-to-severe atopic dermatitis patients shows an inflammatory signature. J Am Acad Dermatol. 2020;82:690–699. doi: 10.1016/j.jaad.2019.10.039. [DOI] [PubMed] [Google Scholar]
- Pellefigues C., Naidoo K., Mehta P., Schmidt A.J., Jagot F., Roussel E., et al. Basophils promote barrier dysfunction and resolution in the atopic skin. J Allergy Clin Immunol. 2021;148:799–812.e10. doi: 10.1016/j.jaci.2021.02.018. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pharmaceuticals and Medical Devices Agency Dupixent (dupilumab) 2021. https://www.pmda.go.jp/PmdaSearch/iyakuDetail/GeneralList/4490405 [Japan PDMA]
- Pilgram G.S., Vissers D.C., van der Meulen H., Pavel S., Lavrijsen S.P., Bouwstra J.A., et al. Aberrant lipid organization in stratum corneum of patients with atopic dermatitis and lamellar ichthyosis. J Invest Dermatol. 2001;117:710–717. doi: 10.1046/j.0022-202x.2001.01455.x. [DOI] [PubMed] [Google Scholar]
- Pilgram G.S.K., Engelsma-van Pelt A.M., Bouwstra J.A., Koerten H.K. Electron diffraction provides new information on human stratum corneum lipid organization studied in relation to depth and temperature. J Invest Dermatol. 1999;113:403–409. doi: 10.1046/j.1523-1747.1999.00706.x. [DOI] [PubMed] [Google Scholar]
- Pivarcsi A., Gombert M., Dieu-Nosjean M.C., Lauerma A., Kubitza R., Meller S., et al. CC chemokine ligand 18, an atopic dermatitis-associated and dendritic cell-derived chemokine, is regulated by staphylococcal products and allergen exposure. J Immunol. 2004;173:5810–5817. doi: 10.4049/jimmunol.173.9.5810. [DOI] [PubMed] [Google Scholar]
- Postlethwaite A.E., Holness M.A., Katai H., Raghow R. Human fibroblasts synthesize elevated levels of extracellular matrix proteins in response to interleukin 4. J Clin Invest. 1992;90:1479–1485. doi: 10.1172/JCI116015. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Presland R.B., Kimball J.R., Kautsky M.B., Lewis S.P., Lo C.Y., Dale B.A. Evidence for specific proteolytic cleavage of the N-terminal domain of human profilaggrin during epidermal differentiation. J Invest Dermatol. 1997;108:170–178. doi: 10.1111/1523-1747.ep12333356. [DOI] [PubMed] [Google Scholar]
- Pummi K., Malminen M., Aho H., Karvonen S.L., Peltonen J., Peltonen S. Epidermal tight junctions: ZO-1 and occludin are expressed in mature, developing, and affected skin and in vitro differentiating keratinocytes. J Invest Dermatol. 2001;117:1050–1058. doi: 10.1046/j.0022-202x.2001.01493.x. [DOI] [PubMed] [Google Scholar]
- Punnonen J., Aversa G., Cocks B.G., McKenzie A.N., Menon S., Zurawski G., et al. Interleukin 13 induces interleukin 4-independent IgG4 and IgE synthesis and CD23 expression by human B cells. Proc Natl Acad Sci USA. 1993;90:3730–3734. doi: 10.1073/pnas.90.8.3730. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Purwar R., Kraus M., Werfel T., Wittmann M. Modulation of keratinocyte-derived MMP-9 by IL-13: a possible role for the pathogenesis of epidermal inflammation. J Invest Dermatol. 2008;128:59–66. doi: 10.1038/sj.jid.5700940. [DOI] [PubMed] [Google Scholar]
- Rahn E., Thier K., Petermann P., Rübsam M., Staeheli P., Iden S., et al. Epithelial barriers in murine skin during herpes simplex virus 1 infection: the role of tight junction formation. J Invest Dermatol. 2017;137:884–893. doi: 10.1016/j.jid.2016.11.027. [DOI] [PubMed] [Google Scholar]
- Rankin A.L., Mumm J.B., Murphy E., Turner S., Yu N., McClanahan T.K., et al. IL-33 induces IL-13-dependent cutaneous fibrosis. J Immunol. 2010;184:1526–1535. doi: 10.4049/jimmunol.0903306. [DOI] [PubMed] [Google Scholar]
- Rawlings A.V., Matts P.J. Stratum corneum moisturization at the molecular level: an update in relation to the dry skin cycle. J Invest Dermatol. 2005;124:1099–1110. doi: 10.1111/j.1523-1747.2005.23726.x. [DOI] [PubMed] [Google Scholar]
- Regeneron Dupixent. (dupilumab) 2021. https://www.regeneron.com/downloads/dupixent_fpi.pdf [prescribing information]
- Reichelt J., Büssow H., Grund C., Magin T.M. Formation of a normal epidermis supported by increased stability of keratins 5 and 14 in keratin 10 null mice. Mol Biol Cell. 2001;12:1557–1568. doi: 10.1091/mbc.12.6.1557. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Resing K.A., Thulin C., Whiting K., al-Alawi N., Mostad S., Characterization of profilaggrin endoproteinase 1 A regulated cytoplasmic endoproteinase of epidermis. J Biol Chem. 1995;270:28193–28198. doi: 10.1074/jbc.270.47.28193. [DOI] [PubMed] [Google Scholar]
- Ricci G., Patrizi A., Neri I., Bendandi B., Masi M. Frequency and clinical role of Staphylococcus aureus overinfection in atopic dermatitis in children. Pediatr Dermatol. 2003;20:389–392. doi: 10.1046/j.1525-1470.2003.20503.x. [DOI] [PubMed] [Google Scholar]
- Rice R.H., Green H. Presence in human epidermal cells of a soluble protein precursor of the cross-linked envelope: activation of the cross-linking by calcium ions. Cell. 1979;18:681–694. doi: 10.1016/0092-8674(79)90123-5. [DOI] [PubMed] [Google Scholar]
- Rohner M.H., Thormann K., Cazzaniga S., Yousefi S., Simon H.U., Schlapbach C., et al. Dupilumab reduces inflammation and restores the skin barrier in patients with atopic dermatitis. Allergy. 2021;76:1268–1270. doi: 10.1111/all.14664. [DOI] [PubMed] [Google Scholar]
- Roth W., Kumar V., Beer H.D., Richter M., Wohlenberg C., Reuter U., et al. Keratin 1 maintains skin integrity and participates in an inflammatory network in skin through interleukin-18. J Cell Sci. 2012;125:5269–5279. doi: 10.1242/jcs.116574. [DOI] [PubMed] [Google Scholar]
- Sales K.U., Masedunskas A., Bey A.L., Rasmussen A.L., Weigert R., List K., et al. Matriptase initiates activation of epidermal pro-kallikrein and disease onset in a mouse model of netherton syndrome. Nat Genet. 2010;42:676–683. doi: 10.1038/ng.629. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sandilands A., Sutherland C., Irvine A.D., McLean W.H.I. Filaggrin in the frontline: role in skin barrier function and disease. J Cell Sci. 2009;122:1285–1294. doi: 10.1242/jcs.033969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sandilands A., Terron-Kwiatkowski A., Hull P.R., O'Regan G.M., Clayton T.H., Watson R.M., et al. Comprehensive analysis of the gene encoding filaggrin uncovers prevalent and rare mutations in ichthyosis vulgaris and atopic eczema. Nat Genet. 2007;39:650–654. doi: 10.1038/ng2020. [DOI] [PubMed] [Google Scholar]
- Sanford J.A., Gallo R.L. Functions of the skin microbiota in health and disease. Semin Immunol. 2013;25:370–377. doi: 10.1016/j.smim.2013.09.005. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Savinko T., Lauerma A., Lehtimäki S., Gombert M., Majuri M.L., Fyhrquist-Vanni N., et al. Topical superantigen exposure induces epidermal accumulation of CD8+ T cells, a mixed Th1/Th2-type dermatitis and vigorous production of IgE antibodies in the murine model of atopic dermatitis. J Immunol. 2005;175:8320–8326. doi: 10.4049/jimmunol.175.12.8320. [DOI] [PubMed] [Google Scholar]
- Schlievert P.M., Cahill M.P., Hostager B.S., Brosnahan A.J., Klingelhutz A.J., Gourronc F.A., et al. Staphylococcal superantigens stimulate epithelial cells through CD40 to produce chemokines. mBio. 2019;10:e00214–e00219. doi: 10.1128/mBio.00214-19. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schmitz J., Owyang A., Oldham E., Song Y., Murphy E., McClanahan T.K., et al. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper Type 2-associated cytokines. Immunity. 2005;23:479–490. doi: 10.1016/j.immuni.2005.09.015. [DOI] [PubMed] [Google Scholar]
- Schweizer J., Bowden P.E., Coulombe P.A., Langbein L., Lane E.B., Magin T.M., et al. New consensus nomenclature for mammalian keratins. J Cell Biol. 2006;174:169–174. doi: 10.1083/jcb.200603161. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sehra S., Yao Y., Howell M.D., Nguyen E.T., Kansas G.S., Leung D.Y.M., et al. IL-4 regulates skin homeostasis and the predisposition toward allergic skin inflammation. J Immunol. 2010;184:3186–3190. doi: 10.4049/jimmunol.0901860. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Seltmann J., Roesner L.M., von Hesler F.W., Wittmann M., Werfel T. IL-33 impacts on the skin barrier by downregulating the expression of filaggrin. J Allergy Clin Immunol. 2015;135:1659–1661.e4. doi: 10.1016/j.jaci.2015.01.048. [DOI] [PubMed] [Google Scholar]
- Seltmann K., Roth W., Kröger C., Loschke F., Lederer M., Hüttelmaier S., et al. Keratins mediate localization of hemidesmosomes and repress cell motility. J Invest Dermatol. 2013;133:181–190. doi: 10.1038/jid.2012.256. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sheu H.M., Lee J.Y., Chai C.Y., Kuo K.W. Depletion of stratum corneum intercellular lipid lamellae and barrier function abnormalities after long-term topical corticosteroids. Br J Dermatol. 1997;136:884–890. [PubMed] [Google Scholar]
- Sheu H.M., Tai C.L., Kuo K.W., Yu H.S., Chai C.Y. Modulation of epidermal terminal differentiation in patients after long-term topical corticosteroids. J Dermatol. 1991;18:454–464. doi: 10.1111/j.1346-8138.1991.tb03115.x. [DOI] [PubMed] [Google Scholar]
- Shimoda-Komatsu Y., Sato Y., Yamazaki Y., Takahashi R., Shiohara T. A novel method to assess the potential role of sweating abnormalities in the pathogenesis of atopic dermatitis. Exp Dermatol. 2018;27:386–392. doi: 10.1111/exd.13448. [DOI] [PubMed] [Google Scholar]
- Shiohara T., Doi T., Hayakawa J. Defective sweating responses in atopic dermatitis. Curr Probl Dermatol. 2011;41:68–79. doi: 10.1159/000323297. [DOI] [PubMed] [Google Scholar]
- Simpson E.L., Villarreal M., Jepson B., Rafaels N., David G., Hanifin J., et al. Patients with atopic dermatitis colonized with Staphylococcus aureus have a distinct phenotype and endotype. J Invest Dermatol. 2018;138:2224–2233. doi: 10.1016/j.jid.2018.03.1517. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Singh R., Heron C.E., Ghamrawi R.I., Strowd L.C., Feldman S.R. Emerging role of Janus kinase inhibitors for the treatment of atopic dermatitis. Immunotargets Ther. 2020;9:255–272. doi: 10.2147/ITT.S229667. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sladek F.M. The yin and yang of proliferation and differentiation: cyclin D1 inhibits differentiation factors ChREBP and HNF4α. Cell Cycle. 2012;11:3156–3157. doi: 10.4161/cc.21721. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith F.J., Irvine A.D., Terron-Kwiatkowski A., Sandilands A., Campbell L.E., Zhao Y., et al. Loss-of-function mutations in the gene encoding filaggrin cause ichthyosis vulgaris. Nat Genet. 2006;38:337–342. doi: 10.1038/ng1743. [DOI] [PubMed] [Google Scholar]
- Sokol C.L., Barton G.M., Farr A.G., Medzhitov R. A mechanism for the initiation of allergen-induced T helper type 2 responses. Nat Immunol. 2008;9:310–318. doi: 10.1038/ni1558. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sonkoly E., Muller A., Lauerma A.I., Pivarcsi A., Soto H., Kemeny L., et al. IL-31: a new link between T cells and pruritus in atopic skin inflammation. J Allergy Clin Immunol. 2006;117:411–417. doi: 10.1016/j.jaci.2005.10.033. [DOI] [PubMed] [Google Scholar]
- Steinert P.M., Marekov L.N. The proteins elafin, filaggrin, keratin intermediate filaments, loricrin, and small proline-rich proteins 1 and 2 are isodipeptide cross-linked components of the human epidermal cornified cell envelope. J Biol Chem. 1995;270:17702–17711. doi: 10.1074/jbc.270.30.17702. [DOI] [PubMed] [Google Scholar]
- Stott B., Lavender P., Lehmann S., Pennino D., Durham S., Schmidt-Weber C.B. Human IL-31 is induced by IL-4 and promotes TH2-driven inflammation. J Allergy Clin Immunol. 2013;132:446–454.e5. doi: 10.1016/j.jaci.2013.03.050. [DOI] [PubMed] [Google Scholar]
- Suárez-Fariñas M., Dhingra N., Gittler J., Shemer A., Cardinale I., de Guzman Strong C., et al. Intrinsic atopic dermatitis shows similar Th2 and higher Th17 immune activation compared with extrinsic atopic dermatitis. J Allergy Clin Immunol. 2013;132:361–370. doi: 10.1016/j.jaci.2013.04.046. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Suárez-Fariñas M., Tintle S.J., Shemer A., Chiricozzi A., Nograles K., Cardinale I., et al. Nonlesional atopic dermatitis skin is characterized by broad terminal differentiation defects and variable immune abnormalities. J Allergy Clin Immunol. 2011;127 doi: 10.1016/j.jaci.2010.12.1124. 954–64:e1–4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sugiura H., Omoto M., Hirota Y., Danno K., Uehara M. Density and fine structure of peripheral nerves in various skin lesions of atopic dermatitis. Arch Dermatol Res. 1997;289:125–131. doi: 10.1007/s004030050167. [DOI] [PubMed] [Google Scholar]
- Swain S.L., Weinberg A.D., English M., Huston G. IL-4 directs the development of Th2-like helper effectors. J Immunol. 1990;145:3796–3806. [PubMed] [Google Scholar]
- Szeverenyi I., Cassidy A.J., Chung C.W., Lee B.T., Common J.E., Ogg S.C., et al. The human intermediate filament database: comprehensive information on a gene family involved in many human diseases. Hum Mutat. 2008;29:351–360. doi: 10.1002/humu.20652. [DOI] [PubMed] [Google Scholar]
- Takahagi S., Tanaka A., Hide M. Sweat allergy. Allergol Int. 2018;67:435–441. doi: 10.1016/j.alit.2018.07.002. [DOI] [PubMed] [Google Scholar]
- Takahashi A., Murota H., Matsui S., Kijima A., Kitaba S., Lee J.B., et al. Decreased sudomotor function is involved in the formation of atopic eczema in the cubital fossa. Allergol Int. 2013;62:473–478. doi: 10.2332/allergolint.13-OA-0547. [DOI] [PubMed] [Google Scholar]
- Takahashi S., Ishida A., Kubo A., Kawasaki H., Ochiai S., Nakayama M., et al. Homeostatic pruning and activity of epidermal nerves are dysregulated in barrier-impaired skin during chronic itch development. Sci Rep. 2019;9:8625. doi: 10.1038/s41598-019-44866-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takigawa H., Nakagawa H., Kuzukawa M., Mori H., Imokawa G. Deficient production of hexadecenoic acid in the skin is associated in part with the vulnerability of atopic dermatitis patients to colonization by Staphylococcus aureus. Dermatology. 2005;211:240–248. doi: 10.1159/000087018. [DOI] [PubMed] [Google Scholar]
- Tan Q., Yang H., Liu E., Wang H. P38/ERK MAPK signaling pathways are involved in the regulation of filaggrin and involucrin by IL-17. Mol Med Rep. 2017;16:8863–8867. doi: 10.3892/mmr.2017.7689. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Terada M., Tsutsui H., Imai Y., Yasuda K., Mizutani H., Yamanishi K., et al. Contribution of IL-18 to atopic-dermatitis-like skin inflammation induced by Staphylococcus aureus product in mice. Proc Natl Acad Sci USA. 2006;103:8816–8821. doi: 10.1073/pnas.0602900103. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thyssen J.P., Kezic S. Causes of epidermal filaggrin reduction and their role in the pathogenesis of atopic dermatitis. J Allergy Clin Immunol. 2014;134:792–799. doi: 10.1016/j.jaci.2014.06.014. [DOI] [PubMed] [Google Scholar]
- Totsuka A., Omori-Miyake M., Kawashima M., Yagi J., Tsunemi Y. Expression of keratin 1, keratin 10, desmoglein 1 and desmocollin 1 in the epidermis: possible downregulation by interleukin-4 and interleukin-13 in atopic dermatitis. Eur J Dermatol. 2017;27:247–253. doi: 10.1684/ejd.2017.2985. [DOI] [PubMed] [Google Scholar]
- Totté J.E.E., van der Feltz W.T., Hennekam M., van Belkum A., van Zuuren E.J., Pasmans S.G.M.A. Prevalence and odds of Staphylococcus aureus carriage in atopic dermatitis: a systematic review and meta-analysis. Br J Dermatol. 2016;175:687–695. doi: 10.1111/bjd.14566. [DOI] [PubMed] [Google Scholar]
- Ungar B., Garcet S., Gonzalez J., Dhingra N., Correa da Rosa J., Shemer A., et al. An integrated model of atopic dermatitis biomarkers highlights the systemic nature of the disease. J Invest Dermatol. 2017;137:603–613. doi: 10.1016/j.jid.2016.09.037. [DOI] [PubMed] [Google Scholar]
- Urashima R., Mihara M. Cutaneous nerves in atopic dermatitis. A histological, immunohistochemical and electron microscopic study. Virchows Arch. 1998;432:363–370. doi: 10.1007/s004280050179. [DOI] [PubMed] [Google Scholar]
- van Smeden J., Bouwstra J.A. Stratum corneum lipids: their role for the skin barrier function in healthy subjects and atopic dermatitis patients. Curr Probl Dermatol. 2016;49:8–26. doi: 10.1159/000441540. [DOI] [PubMed] [Google Scholar]
- van Smeden J., Janssens M., Kaye E.C.J., Caspers P.J., Lavrijsen A.P., Vreeken R.J., et al. The importance of free fatty acid chain length for the skin barrier function in atopic eczema patients. Exp Dermatol. 2014;23:45–52. doi: 10.1111/exd.12293. [DOI] [PubMed] [Google Scholar]
- Vávrová K., Henkes D., Strüver K., Sochorová M., Školová B., Witting M.Y., et al. Filaggrin deficiency leads to impaired lipid profile and altered acidification pathways in a 3D skin construct. J Invest Dermatol. 2014;134:746–753. doi: 10.1038/jid.2013.402. [DOI] [PubMed] [Google Scholar]
- Voegeli R., Rawlings A.V., Breternitz M., Doppler S., Schreier T., Fluhr J.W. Increased stratum corneum serine protease activity in acute eczematous atopic skin. Br J Dermatol. 2009;161:70–77. doi: 10.1111/j.1365-2133.2009.09142.x. [published correction appears in Br J Dermatol 2009;161:492] [DOI] [PubMed] [Google Scholar]
- Wang X.W., Wang J.J., Gutowska-Owsiak D., Salimi M., Selvakumar T.A., Gwela A., et al. Deficiency of filaggrin regulates endogenous cysteine protease activity, leading to impaired skin barrier function. Clin Exp Dermatol. 2017;42:622–631. doi: 10.1111/ced.13113. [DOI] [PubMed] [Google Scholar]
- Wang Y., Zheng J., Han Y., Zhang Y., Su L., Hu D., et al. JAM-A knockdown accelerates the proliferation and migration of human keratinocytes, and improves wound healing in rats via FAK/Erk signaling. Cell Death Dis. 2018;9:848. doi: 10.1038/s41419-018-0941-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Watkinson A. Stratum corneum thiol protease (SCTP): a novel cysteine protease of late epidermal differentiation. Arch Dermatol Res. 1999;291:260–268. doi: 10.1007/s004030050406. [DOI] [PubMed] [Google Scholar]
- Weidinger S., O’Sullivan M., Illig T., Baurecht H., Depner M., Rodriguez E., et al. Filaggrin mutations, atopic eczema, hay fever, and asthma in children. J Allergy Clin Immunol. 2008;121:1203–1209.e1. doi: 10.1016/j.jaci.2008.02.014. [DOI] [PubMed] [Google Scholar]
- Weidinger S., Rodríguez E., Stahl C., Wagenpfeil S., Klopp N., Illig T., et al. Filaggrin mutations strongly predispose to early-onset and extrinsic atopic dermatitis. J Invest Dermatol. 2007;127:724–726. doi: 10.1038/sj.jid.5700630. [DOI] [PubMed] [Google Scholar]
- Williams M.R., Nakatsuji T., Sanford J.A., Vrbanac A.F., Gallo R.L. Staphylococcus aureus induces increased serine protease activity in keratinocytes. J Invest Dermatol. 2017;137:377–384. doi: 10.1016/j.jid.2016.10.008. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilson S.R., Thé L., Batia L.M., Beattie K., Katibah G.E., McClain S.P., et al. The epithelial cell-derived atopic dermatitis cytokine TSLP activates neurons to induce itch. Cell. 2013;155:285–295. doi: 10.1016/j.cell.2013.08.057. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wollenberg A., Barbarot S., Bieber T., Christen-Zaech S., Deleuran M., Fink-Wagner A., et al. Consensus-based European guidelines for treatment of atopic eczema (atopic dermatitis) in adults and children: part I. J Eur Acad Dermatol Venereol. 2018;32:657–682. doi: 10.1111/jdv.14891. [published correction appears in J Eur Acad Dermatol Venereol 2019;33:1436] [DOI] [PubMed] [Google Scholar]
- Wollenberg A., Barbarot S., Bieber T., Christen-Zaech S., Deleuran M., Fink-Wagner A., et al. Consensus-based European guidelines for treatment of atopic eczema (atopic dermatitis) in adults and children: part II. J Eur Acad Dermatol Venereol. 2018;32:850–878. doi: 10.1111/jdv.14888. [DOI] [PubMed] [Google Scholar]
- Wollenberg A., Blauvelt A., Guttman-Yassky E., Worm M., Lynde C., Lacour J.P., et al. Tralokinumab for moderate-to-severe atopic dermatitis: results from two 52-week, randomized, double-blind, multicentre, placebo-controlled phase III trials (ECZTRA 1 and ECZTRA 2) Br J Dermatol. 2021;184:437–449. doi: 10.1111/bjd.19574. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wood L.C., Elias P.M., Calhoun C., Tsai J.C., Grunfeld C., Feingold K.R. Barrier disruption stimulates interleukin-1 alpha expression and release from a pre-formed pool in murine epidermis. J Invest Dermatol. 1996;106:397–403. doi: 10.1111/1523-1747.ep12343392. [DOI] [PubMed] [Google Scholar]
- Xhauflaire-Uhoda E., Thirion L., Piérard-Franchimont C., Piérard G.E. Comparative effect of tacrolimus and betamethasone valerate on the passive sustainable hydration of the stratum corneum in atopic dermatitis. Dermatology. 2007;214:328–332. doi: 10.1159/000100884. [DOI] [PubMed] [Google Scholar]
- Yamaga K., Murota H., Tamura A., Miyata H., Ohmi M., Kikuta J., et al. Claudin-3 loss causes leakage of sweat from the sweat gland to contribute to the pathogenesis of atopic dermatitis. J Invest Dermatol. 2018;138:1279–1287. doi: 10.1016/j.jid.2017.11.040. [DOI] [PubMed] [Google Scholar]
- Yokouchi M., Atsugi T., Logtestijn M.V., Tanaka R.J., Kajimura M., Suematsu M., et al. Epidermal cell turnover across tight junctions based on Kelvin's tetrakaidecahedron cell shape. Elife. 2016;5 doi: 10.7554/eLife.19593. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yoshida K., Kubo A., Fujita H., Yokouchi M., Ishii K., Kawasaki H., et al. Distinct behavior of human Langerhans cells and inflammatory dendritic epidermal cells at tight junctions in patients with atopic dermatitis. J Allergy Clin Immunol. 2014;134:856–864. doi: 10.1016/j.jaci.2014.08.001. [DOI] [PubMed] [Google Scholar]
- Yoshida K., Yokouchi M., Nagao K., Ishii K., Amagai M., Kubo A. Functional tight junction barrier localizes in the second layer of the stratum granulosum of human epidermis. J Dermatol Sci. 2013;71:89–99. doi: 10.1016/j.jdermsci.2013.04.021. [DOI] [PubMed] [Google Scholar]
- Yoshimoto T., Tsutsui H., Tominaga K., Hoshino K., Okamura H., Akira S., et al. IL-18, although antiallergic when administered with IL-12, stimulates IL-4 and histamine release by basophils. Proc Natl Acad Sci USA. 1999;96:13962–13966. doi: 10.1073/pnas.96.24.13962. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zainal H., Jamil A., Md Nor N., Tang M.M. Skin pH mapping and its relationship with transepidermal water loss, hydration and disease severity in adult patients with atopic dermatitis. Skin Res Technol. 2020;26:91–98. doi: 10.1111/srt.12768. [DOI] [PubMed] [Google Scholar]
- Zedan K., Rasheed Z., Farouk Y., Alzolibani A.A.Q., Bin Saif G., Ismail H.A., et al. Immunoglobulin E, interleukin-18 and interleukin-12 in patients with atopic dermatitis: correlation with disease activity. J Clin Diagn Res. 2015;9 doi: 10.7860/JCDR/2015/12261.5742. WC01‒5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zheng T., Oh M.H., Oh S.Y., Schroeder J.T., Glick A.B., Zhu Z. Transgenic expression of interleukin-13 in the skin induces a pruritic dermatitis and skin remodelling. J Invest Dermatol. 2009;129:742–751. doi: 10.1038/jid.2008.295. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhu J., Wang Z., Chen F. Association of key genes and pathways with atopic dermatitis by bioinformatics analysis. Med Sci Monit. 2019;25:4353–4361. doi: 10.12659/MSM.916525. [DOI] [PMC free article] [PubMed] [Google Scholar]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.