Skip to main content
IUCrData logoLink to IUCrData
. 2020 May 27;5(Pt 5):x200689. doi: 10.1107/S2414314620006896

2,3-Dimethyl-1H-imidazol-3-ium benzene­sulfonate–1,2-dimethyl-1H-imidazole co-crystal

Noah Cyr a, Matthias Zeller b, Patrick C Hillesheim c, Arsalan Mirjafari a,*
Editor: R J Butcherd
PMCID: PMC9462227  PMID: 36337146

The title compound exists with one protonated imidazolium ring, one neutral imidazole ring, and a benzene­sulfonate anion in the asymmetric unit. The imidazole rings are held together through hydrogen bonding via a protonated nitro­gen on the ring.

Keywords: crystal structure, tosyl­ate, imidazolium, ionic crystal

Abstract

In the title co-crystal, C5H9N2 +·C6H5O3S·C5H8N2, the two 1,2-di­methyl­imidazole rings exist as partially protonated moieties in the asymmetric unit as a two-part disordered unit wherein the acidic hydrogen atom is bound to each ring. The two imidazolium cations share a strong hydrogen bond via the acidic hydrogen atom, which is disordered between two positions, being bonded to the first versus second imidazole ring in a 0.33 (2) to 0.67 (2) ratio. A benzene sulfonate anion is present for charge balance and inter­acts with the aromatic H atoms on both imidazole rings as well as with the methyl groups on the rings. graphic file with name x-05-x200689-scheme1-3D1.jpg

Structure description

The title compound (Fig. 1) crystallizes with two 1,2-di­methyl­imidazolium cations in the asymmetric unit. The two imidazole rings are each partially protonated, wherein the acidic hydrogen atom is bound between the two N atoms of the aromatic ring in a 0.33 (2) to 0.67 (2) ratio. Hydrogen bonding appears to the dominant inter­molecular inter­action with each molecule or ion exhibiting inter­actions (Fig. 2). For instance, the shortest hydrogen bonds are N—H⋯N links between the imidazolium rings with H⋯N = 1.83 (8) and 1.90 (8) Å. This bonding arises from the disordered hydrogen atom, which appears to be shared between the two rings. Further, cation–anion C—H⋯O inter­actions occur between the aromatic H atoms and the sulfonate O atoms. Finally, there are anion–anion inter­actions wherein O atoms of the sulfonate group interact with hydrogens on the benzene rings. A summary of the distances for the hydrogen bonds is found in Table 1.

Figure 1.

Figure 1

The title compound shown with 50% probability ellipsoids. Only the major component is shown.

Figure 2.

Figure 2

Packing diagram of the title compound viewed down the (010) plane showing a layered network of ion pairs held together through hydrogen inter­actions. Both parts of the disorder are shown.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯N3 0.83 1.90 2.6970 (11) 163
N3—H3N⋯N1 0.89 1.81 2.6970 (11) 170
C1—H1⋯O1 0.95 2.43 3.3741 (13) 170
C4—H4B⋯O3i 0.98 2.33 3.2956 (12) 170
C6—H6⋯O2 0.95 2.60 3.4288 (14) 146
C7—H7⋯O2ii 0.95 2.41 3.3254 (12) 162
C9—H9A⋯O3iii 0.98 2.53 3.4846 (14) 164
C9—H9B⋯O3ii 0.98 2.46 3.4381 (14) 173
C13—H13⋯O1i 0.95 2.67 3.4738 (14) 143
C14—H14⋯O1iv 0.95 2.48 3.3920 (13) 162

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic ; (iii) Inline graphic ; (iv) Inline graphic .

For a related structure with a chloride anion, see Kelley et al. (2013).

Synthesis and crystallization

The reaction was conducted in a Biotage Initiator+ microwave reactor. To a microwave vial was added a stir bar as well as 7.5 mmol (721 mg) of 1,2 di­methyl­imidazole and 7.5 mmol (901 μL) of benzene­sulfonyl fluoride. The vial was sealed and placed into the microwave reactor. The reaction was performed at 105°C for 5 minutes and 38 s with very high microwave absorption, stirring at 600 rpm. Once finished and cooled to room temperature, the solution was transferred to an oven-dried amber scintillation vial and sealed with parafilm. After one week, crystals suitable for diffraction were found growing in the vial.

A proposed mechanism leading to the formation of the crystallized product reported herein is shown in Fig. 3.

Figure 3.

Figure 3

Proposed mechanism leading to the formation of the crystallized product reported herein.

1H NMR (400 MHz, chloro­form-D) δ 8.01–7.99 (m, 1H), 7.89–7.87 (m, 1H), 7.77 (dd, J = 8.1, 6.7 Hz, 1H), 7.62 (t, J = 7.4 Hz, 1H), 7.35 (t, J = 2.6 Hz, 1H), 7.25 (s, 1H), 6.98–6.83 (m, 2H), 3.61 (d, J = 9.1 Hz, 3H), 2.46 (d, J = 14.0 Hz, 3H)

13C NMR (101 MHz, chloro­form-D) δ 206.7, 144.8, 135.7, 130.0, 129.8, 128.5, 128.3, 126.0, 121.2, 121.0, 77.4, 77.1, 76.8, 76.6, 33.5, 12.0, −1.6.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Table 2. Experimental details.

Crystal data
Chemical formula C5H9N2 +·C6H5O3S·C5H8N2
M r 350.43
Crystal system, space group Monoclinic, P21/n
Temperature (K) 150
a, b, c (Å) 10.8820 (6), 8.4029 (4), 18.9678 (11)
β (°) 95.440 (2)
V3) 1726.61 (16)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.21
Crystal size (mm) 0.55 × 0.42 × 0.33
 
Data collection
Diffractometer Bruker AXS D8 Quest CMOS diffractometer
Absorption correction Multi-scan (SADABS; Krause et al., 2015)
T min, T max 0.716, 0.747
No. of measured, independent and observed [I > 2σ(I)] reflections 74762, 6612, 5787
R int 0.032
(sin θ/λ)max−1) 0.771
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.035, 0.095, 1.05
No. of reflections 6612
No. of parameters 225
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.40, −0.44

Computer programs: APEX3 and SAINT (Bruker, 2018), SHELXS97 (Sheldrick, 2008), SHELXL2018/3 (Sheldrick, 2015), shelXle (Hübschle et al., 2011), OLEX2 (Dolomanov et al., 2009), publCIF (Westrip, 2010) and enCIFer (Allen et al., 2004).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2414314620006896/bv4031sup1.cif

x-05-x200689-sup1.cif (2.5MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314620006896/bv4031Isup2.hkl

x-05-x200689-Isup2.hkl (525.6KB, hkl)

Supporting information file. DOI: 10.1107/S2414314620006896/bv4031Isup3.cml

CCDC reference: 2005097

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

This material is based upon work supported by the National Science Foundation through the Major Research Instrumentation Program under grant No. CHE 1625543 (funding for the single-crystal X-ray diffractometer). Acknowledgment is made to the donors of the American Chemical Society Petroleum Research Fund for support of this research. The authors gratefully acknowledge the Communities in Transition Initiative for the generous support.

full crystallographic data

Crystal data

C5H9N2+·C6H5O3S·C5H8N2 F(000) = 744
Mr = 350.43 Dx = 1.348 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 10.8820 (6) Å Cell parameters from 9689 reflections
b = 8.4029 (4) Å θ = 2.7–33.2°
c = 18.9678 (11) Å µ = 0.21 mm1
β = 95.440 (2)° T = 150 K
V = 1726.61 (16) Å3 Block, colourless
Z = 4 0.55 × 0.42 × 0.33 mm

Data collection

Bruker AXS D8 Quest CMOS diffractometer 6612 independent reflections
Radiation source: fine focus sealed tube X-ray source 5787 reflections with I > 2σ(I)
Triumph curved graphite crystal monochromator Rint = 0.032
Detector resolution: 10.4167 pixels mm-1 θmax = 33.2°, θmin = 2.3°
ω and phi scans h = −16→16
Absorption correction: multi-scan (SADABS; Krause et al., 2015) k = −12→12
Tmin = 0.716, Tmax = 0.747 l = −29→28
74762 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.095 w = 1/[σ2(Fo2) + (0.0417P)2 + 0.6618P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max = 0.001
6612 reflections Δρmax = 0.40 e Å3
225 parameters Δρmin = −0.44 e Å3
0 restraints Extinction correction: SHELXL-2018/3 (Sheldrick 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0085 (10)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. H atoms attached to carbon atoms were positioned geometrically and constrained to ride on their parent atoms. C—H bond distances were constrained to 0.95 Å for aromatic and alkene C—H moieties, and to 0.98 Å for CH3 moieties, respectively. The N—H proton hydrogen bonding between atoms N1 and N3 was found to be disordered and was refined as split between two positions. The H atoms were assigned as bonded to a planar (sp2 hybridized) N atom, respectively with fixed bond angles and torsion angles, but the N—H bond distances were allowed to refine to account for asymmetry induced by charge and hydrogen bonding (AFIX 44 command). N—H distances refined to 0.83 (5) for N1—H1 and to 0.89 (2) for N3—H3, occupancies refined to 0.33 (2) for H1 and 0.67 (2) for H3. Methyl CH3 were allowed to rotate but not to tip to best fit the experimental electron density. Uiso(H) values were set to a multiple of Ueq(C/N) with 1.5 for CH3 and 1.2 for C—H and NH+, respectively.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C1 0.07995 (8) 0.11974 (12) 0.12505 (5) 0.02370 (17)
H1 0.162507 0.154570 0.136425 0.028*
C2 0.01650 (8) 0.02111 (12) 0.16550 (5) 0.02268 (16)
H2 0.045537 −0.025178 0.209661 0.027*
C3 −0.10216 (8) 0.08832 (10) 0.06876 (4) 0.01832 (14)
C4 −0.20228 (9) −0.08561 (12) 0.15402 (5) 0.02410 (17)
H4A −0.264761 −0.010298 0.167446 0.036*
H4B −0.172925 −0.150361 0.195187 0.036*
H4C −0.238614 −0.154975 0.116071 0.036*
C5 −0.21283 (8) 0.09673 (13) 0.01670 (5) 0.02515 (18)
H5A −0.194381 0.162346 −0.023687 0.038*
H5B −0.281506 0.144135 0.039231 0.038*
H5C −0.235631 −0.010751 0.000206 0.038*
C6 0.23459 (9) 0.40162 (12) −0.00734 (5) 0.02566 (18)
H6 0.285770 0.372447 0.034004 0.031*
C7 0.26716 (8) 0.49589 (12) −0.06067 (6) 0.02502 (18)
H7 0.345007 0.545291 −0.063695 0.030*
C8 0.07312 (8) 0.42021 (10) −0.08640 (4) 0.01863 (14)
C9 0.15832 (10) 0.59191 (13) −0.17707 (5) 0.02847 (19)
H9A 0.142896 0.516294 −0.216246 0.043*
H9B 0.236534 0.647282 −0.181302 0.043*
H9C 0.090972 0.669653 −0.178780 0.043*
C10 −0.05084 (9) 0.40053 (13) −0.12482 (5) 0.02596 (18)
H10A −0.090249 0.504931 −0.131824 0.039*
H10B −0.101453 0.332570 −0.097120 0.039*
H10C −0.042876 0.351054 −0.170954 0.039*
C11 0.43346 (7) 0.00325 (9) 0.14618 (4) 0.01514 (13)
C12 0.36079 (8) −0.06738 (10) 0.19405 (4) 0.01852 (14)
H12 0.326061 −0.004339 0.228696 0.022*
C13 0.33919 (9) −0.23035 (11) 0.19101 (5) 0.02475 (18)
H13 0.289972 −0.278763 0.223810 0.030*
C14 0.38933 (10) −0.32262 (12) 0.14020 (6) 0.0293 (2)
H14 0.375570 −0.434269 0.138722 0.035*
C15 0.45951 (9) −0.25157 (13) 0.09161 (6) 0.02817 (19)
H15 0.492304 −0.314441 0.056220 0.034*
C16 0.48217 (8) −0.08834 (11) 0.09445 (5) 0.02151 (16)
H16 0.530578 −0.039928 0.061247 0.026*
N1 0.00522 (7) 0.16129 (10) 0.06471 (4) 0.02100 (14)
H1N 0.0238 (11) 0.220 (3) 0.0325 (19) 0.025* 0.33 (2)
N2 −0.09869 (7) 0.00209 (9) 0.12923 (4) 0.01850 (13)
N3 0.11314 (7) 0.35581 (10) −0.02425 (4) 0.02125 (14)
H3N 0.0690 (11) 0.2936 (16) 0.0021 (7) 0.026* 0.67 (2)
N4 0.16511 (7) 0.50600 (9) −0.10967 (4) 0.02018 (14)
O1 0.35734 (8) 0.28443 (9) 0.17511 (6) 0.0439 (2)
O2 0.49875 (9) 0.26229 (11) 0.08516 (4) 0.0383 (2)
O3 0.57130 (9) 0.21999 (10) 0.20780 (5) 0.0400 (2)
S1 0.46799 (2) 0.20953 (2) 0.15392 (2) 0.01791 (6)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0187 (4) 0.0277 (4) 0.0242 (4) −0.0014 (3) −0.0009 (3) 0.0018 (3)
C2 0.0207 (4) 0.0263 (4) 0.0202 (4) 0.0008 (3) −0.0024 (3) 0.0030 (3)
C3 0.0179 (3) 0.0208 (4) 0.0163 (3) 0.0012 (3) 0.0019 (3) 0.0019 (3)
C4 0.0218 (4) 0.0268 (4) 0.0244 (4) −0.0017 (3) 0.0057 (3) 0.0059 (3)
C5 0.0206 (4) 0.0326 (5) 0.0214 (4) −0.0007 (3) −0.0025 (3) 0.0057 (3)
C6 0.0217 (4) 0.0257 (4) 0.0285 (4) −0.0007 (3) −0.0032 (3) −0.0017 (3)
C7 0.0176 (4) 0.0236 (4) 0.0338 (5) −0.0029 (3) 0.0020 (3) −0.0033 (3)
C8 0.0182 (3) 0.0197 (3) 0.0183 (3) −0.0019 (3) 0.0032 (3) −0.0005 (3)
C9 0.0367 (5) 0.0263 (4) 0.0240 (4) −0.0061 (4) 0.0108 (4) 0.0020 (3)
C10 0.0209 (4) 0.0326 (5) 0.0237 (4) −0.0051 (3) −0.0017 (3) 0.0037 (3)
C11 0.0138 (3) 0.0151 (3) 0.0160 (3) −0.0013 (2) −0.0009 (2) 0.0004 (2)
C12 0.0195 (3) 0.0185 (3) 0.0174 (3) −0.0033 (3) 0.0012 (3) 0.0012 (3)
C13 0.0264 (4) 0.0195 (4) 0.0271 (4) −0.0066 (3) −0.0035 (3) 0.0064 (3)
C14 0.0310 (5) 0.0154 (4) 0.0388 (5) 0.0007 (3) −0.0104 (4) −0.0017 (3)
C15 0.0254 (4) 0.0259 (4) 0.0320 (5) 0.0068 (3) −0.0036 (3) −0.0108 (4)
C16 0.0171 (3) 0.0271 (4) 0.0203 (4) 0.0017 (3) 0.0017 (3) −0.0031 (3)
N1 0.0185 (3) 0.0238 (3) 0.0208 (3) −0.0010 (3) 0.0027 (2) 0.0026 (3)
N2 0.0179 (3) 0.0203 (3) 0.0174 (3) 0.0002 (2) 0.0017 (2) 0.0026 (2)
N3 0.0206 (3) 0.0230 (3) 0.0199 (3) −0.0013 (3) 0.0008 (2) 0.0010 (3)
N4 0.0199 (3) 0.0193 (3) 0.0219 (3) −0.0027 (2) 0.0051 (2) −0.0011 (3)
O1 0.0321 (4) 0.0167 (3) 0.0868 (7) −0.0008 (3) 0.0267 (5) −0.0041 (4)
O2 0.0559 (5) 0.0311 (4) 0.0288 (4) −0.0159 (4) 0.0089 (4) 0.0088 (3)
O3 0.0445 (5) 0.0265 (4) 0.0438 (5) −0.0125 (3) −0.0235 (4) 0.0020 (3)
S1 0.01652 (9) 0.01532 (9) 0.02171 (10) −0.00380 (6) 0.00082 (7) 0.00194 (6)

Geometric parameters (Å, º)

C1—C2 1.3612 (13) C9—H9A 0.9800
C1—N1 1.3845 (12) C9—H9B 0.9800
C1—H1 0.9500 C9—H9C 0.9800
C2—N2 1.3809 (11) C10—H10A 0.9800
C2—H2 0.9500 C10—H10B 0.9800
C3—N1 1.3283 (11) C10—H10C 0.9800
C3—N2 1.3541 (11) C11—C16 1.3910 (12)
C3—C5 1.4848 (12) C11—C12 1.3921 (11)
C4—N2 1.4613 (11) C11—S1 1.7767 (8)
C4—H4A 0.9800 C12—C13 1.3897 (12)
C4—H4B 0.9800 C12—H12 0.9500
C4—H4C 0.9800 C13—C14 1.3883 (15)
C5—H5A 0.9800 C13—H13 0.9500
C5—H5B 0.9800 C14—C15 1.3866 (16)
C5—H5C 0.9800 C14—H14 0.9500
C6—C7 1.3580 (14) C15—C16 1.3937 (14)
C6—N3 1.3847 (12) C15—H15 0.9500
C6—H6 0.9500 C16—H16 0.9500
C7—N4 1.3815 (12) N1—H1N 0.83 (5)
C7—H7 0.9500 N3—H3N 0.89 (2)
C8—N3 1.3322 (11) O1—S1 1.4489 (8)
C8—N4 1.3418 (11) O2—S1 1.4465 (8)
C8—C10 1.4805 (12) O3—S1 1.4484 (8)
C9—N4 1.4639 (12)
C2—C1—N1 109.27 (8) C8—C10—H10C 109.5
C2—C1—H1 125.4 H10A—C10—H10C 109.5
N1—C1—H1 125.4 H10B—C10—H10C 109.5
C1—C2—N2 105.94 (8) C16—C11—C12 120.15 (8)
C1—C2—H2 127.0 C16—C11—S1 120.42 (6)
N2—C2—H2 127.0 C12—C11—S1 119.39 (6)
N1—C3—N2 110.00 (7) C13—C12—C11 119.83 (8)
N1—C3—C5 127.01 (8) C13—C12—H12 120.1
N2—C3—C5 122.99 (8) C11—C12—H12 120.1
N2—C4—H4A 109.5 C14—C13—C12 120.20 (9)
N2—C4—H4B 109.5 C14—C13—H13 119.9
H4A—C4—H4B 109.5 C12—C13—H13 119.9
N2—C4—H4C 109.5 C15—C14—C13 119.89 (9)
H4A—C4—H4C 109.5 C15—C14—H14 120.1
H4B—C4—H4C 109.5 C13—C14—H14 120.1
C3—C5—H5A 109.5 C14—C15—C16 120.31 (9)
C3—C5—H5B 109.5 C14—C15—H15 119.8
H5A—C5—H5B 109.5 C16—C15—H15 119.8
C3—C5—H5C 109.5 C11—C16—C15 119.60 (9)
H5A—C5—H5C 109.5 C11—C16—H16 120.2
H5B—C5—H5C 109.5 C15—C16—H16 120.2
C7—C6—N3 107.48 (8) C3—N1—C1 106.66 (8)
C7—C6—H6 126.3 C3—N1—H1N 126.7
N3—C6—H6 126.3 C1—N1—H1N 126.7
C6—C7—N4 106.69 (8) C3—N2—C2 108.13 (7)
C6—C7—H7 126.7 C3—N2—C4 125.59 (7)
N4—C7—H7 126.7 C2—N2—C4 126.12 (7)
N3—C8—N4 108.53 (8) C8—N3—C6 108.47 (8)
N3—C8—C10 126.61 (8) C8—N3—H3N 125.8
N4—C8—C10 124.85 (8) C6—N3—H3N 125.8
N4—C9—H9A 109.5 C8—N4—C7 108.83 (8)
N4—C9—H9B 109.5 C8—N4—C9 125.08 (8)
H9A—C9—H9B 109.5 C7—N4—C9 126.06 (8)
N4—C9—H9C 109.5 O2—S1—O3 112.77 (6)
H9A—C9—H9C 109.5 O2—S1—O1 112.73 (6)
H9B—C9—H9C 109.5 O3—S1—O1 112.82 (7)
C8—C10—H10A 109.5 O2—S1—C11 106.84 (4)
C8—C10—H10B 109.5 O3—S1—C11 105.15 (4)
H10A—C10—H10B 109.5 O1—S1—C11 105.78 (4)
N1—C1—C2—N2 0.06 (11) C1—C2—N2—C3 −0.06 (10)
N3—C6—C7—N4 −0.20 (11) C1—C2—N2—C4 −175.75 (9)
C16—C11—C12—C13 1.40 (12) N4—C8—N3—C6 −0.12 (10)
S1—C11—C12—C13 −176.27 (7) C10—C8—N3—C6 179.13 (9)
C11—C12—C13—C14 −0.33 (13) C7—C6—N3—C8 0.20 (11)
C12—C13—C14—C15 −1.04 (14) N3—C8—N4—C7 0.00 (10)
C13—C14—C15—C16 1.35 (15) C10—C8—N4—C7 −179.28 (9)
C12—C11—C16—C15 −1.09 (12) N3—C8—N4—C9 178.37 (8)
S1—C11—C16—C15 176.55 (7) C10—C8—N4—C9 −0.91 (14)
C14—C15—C16—C11 −0.28 (14) C6—C7—N4—C8 0.13 (10)
N2—C3—N1—C1 0.00 (10) C6—C7—N4—C9 −178.22 (9)
C5—C3—N1—C1 179.55 (9) C16—C11—S1—O2 24.77 (8)
C2—C1—N1—C3 −0.04 (11) C12—C11—S1—O2 −157.57 (7)
N1—C3—N2—C2 0.03 (10) C16—C11—S1—O3 −95.30 (8)
C5—C3—N2—C2 −179.54 (9) C12—C11—S1—O3 82.36 (8)
N1—C3—N2—C4 175.76 (8) C16—C11—S1—O1 145.10 (8)
C5—C3—N2—C4 −3.81 (14) C12—C11—S1—O1 −37.24 (9)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1N···N3 0.83 1.90 2.6970 (11) 163
N3—H3N···N1 0.89 1.81 2.6970 (11) 170
C1—H1···O1 0.95 2.43 3.3741 (13) 170
C4—H4B···O3i 0.98 2.33 3.2956 (12) 170
C6—H6···O2 0.95 2.60 3.4288 (14) 146
C7—H7···O2ii 0.95 2.41 3.3254 (12) 162
C9—H9A···O3iii 0.98 2.53 3.4846 (14) 164
C9—H9B···O3ii 0.98 2.46 3.4381 (14) 173
C13—H13···O1i 0.95 2.67 3.4738 (14) 143
C14—H14···O1iv 0.95 2.48 3.3920 (13) 162

Symmetry codes: (i) −x+1/2, y−1/2, −z+1/2; (ii) −x+1, −y+1, −z; (iii) x−1/2, −y+1/2, z−1/2; (iv) x, y−1, z.

Funding Statement

Funding for this research was provided by: National Science Foundation (grant No. CHE 11625543); American Chemical Society Petroleum Research Fund (grant No. PRF 58975-UR4); Ave Maria University Department of Chemistry and Physics .

References

  1. Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.
  2. Bruker (2018). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  4. Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284. [DOI] [PMC free article] [PubMed]
  5. Kelley, S. P., Narita, A., Holbrey, J. D., Green, K. D., Reichert, W. M. & Rogers, R. D. (2013). Cryst. Growth Des. 13, 965–975.
  6. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  9. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2414314620006896/bv4031sup1.cif

x-05-x200689-sup1.cif (2.5MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314620006896/bv4031Isup2.hkl

x-05-x200689-Isup2.hkl (525.6KB, hkl)

Supporting information file. DOI: 10.1107/S2414314620006896/bv4031Isup3.cml

CCDC reference: 2005097

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from IUCrData are provided here courtesy of International Union of Crystallography

RESOURCES