Skip to main content
Elsevier - PMC Mpox Collection logoLink to Elsevier - PMC Mpox Collection
. 2002 Jun 26;297(2):172–194. doi: 10.1006/viro.2002.1446

Analysis of the Monkeypox Virus Genome

SN Shchelkunov a, AV Totmenin a, PF Safronov a, MV Mikheev a, VV Gutorov a, OI Ryazankina a, NA Petrov a, IV Babkin a, EA Uvarova a, LS Sandakhchiev a, JR Sisler b, JJ Esposito c, IK Damon c, PB Jahrling d, B Moss b,1
PMCID: PMC9534300  PMID: 12083817

Abstract

Monkeypox virus (MPV) belongs to the orthopoxvirus genus of the family Poxviridae, is endemic in parts of Africa, and causes a human disease that resembles smallpox. The 196,858-bp MPV genome was analyzed with regard to structural features and open reading frames. Each end of the genome contains an identical but oppositely oriented 6379-bp terminal inverted repetition, which similar to that of other orthopoxviruses, includes a putative telomere resolution sequence and short tandem repeats. Computer-assisted analysis was used to identify 190 open reading frames containing ≥60 amino acid residues. Of these, four were present within the inverted terminal repetition. MPV contained the known essential orthopoxvirus genes but only a subset of the putative immunomodulatory and host range genes. Sequence comparisons confirmed the assignment of MPV as a distinct species of orthopoxvirus that is not a direct ancestor or a direct descendent of variola virus, the causative agent of smallpox.

References

REFERENCES

  • 1.Ahn B.Y., Moss B. Glutaredoxin homolog encoded by vaccinia virus is a virion-associated enzyme with thioltransferase and dehydroascorbate reductase activities. Proc. Natl. Acad. Sci. USA. 1992;89:7060–7064. doi: 10.1073/pnas.89.15.7060. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Ahn B.-Y., Moss B. RNA polymerase-associated transcription specificity factor encoded by vaccinia virus. Proc. Natl. Acad. Sci. USA. 1992;89:3536–3540. doi: 10.1073/pnas.89.8.3536. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Ahn B.-Y., Gershon P.D., Jones E.V., Moss B. Identification of rpo30, a vaccinia virus RNA polymerase gene with structural similarity to a eucaryotic transcription elongation factor. Mol. Cell. Biol. 1990;10:5433–5441. doi: 10.1128/mcb.10.10.5433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Ahn B.-Y., Jones E.V., Moss B. Identification of the vaccinia virus gene encoding an 18-kilodalton subunit of RNA polymerase and demonstration of a 5′ poly(A) leader on its early transcript. J. Virol. 1990;64:3019–3024. doi: 10.1128/jvi.64.6.3019-3024.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Ahn B.-Y., Rosel J., Cole N.B., Moss B. Identification and expression of rpo19, a vaccinia virus gene encoding a 19-kilodalton DNA-dependent RNA polymerase subunit. J. Virol. 1992;66:971–982. doi: 10.1128/jvi.66.2.971-982.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Alcami A., Koszinowski U.H. Viral mechanisms of immune evasion. Trends Microbiol. 2000;8:410–418. doi: 10.1016/S0966-842X(00)01830-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Alcami A., Smith G.L. A soluble receptor for interleukin-1β encoded by vaccinia virus: A novel mechanism of viral modulation of the host response to infection. Cell. 1992;71:153–167. doi: 10.1016/0092-8674(92)90274-g. [DOI] [PubMed] [Google Scholar]
  • 8.Alcami A., Smith G.L. Vaccinia, cowpox, and camelpox viruses encode soluble γ interferon receptors with novel broad species specificity. J. Virol. 1995;69:4633–4639. doi: 10.1128/jvi.69.8.4633-4639.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Alcami A., Smith G.L. A mechanism for the inhibition of fever by a virus. Proc. Natl. Acad. Sci. USA. 1996;93:11029–11034. doi: 10.1073/pnas.93.20.11029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Almazan F., Tscharke D.C., Smith G.L. The vaccinia virus superoxide dismutase-like protein (A45R) is a virion component that is nonessential for virus replication. J. Virol. 2001;75:7018–7029. doi: 10.1128/JVI.75.15.7018-7029.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Altschul S.F., Madden T.L., Schaffer A.A., Zhang J., Zhang Z., Miller W., Lipman D.J. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389–3402. doi: 10.1093/nar/25.17.3389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Amegadzie B.Y., Ahn B.-Y., Moss B. Identification, sequence, and expression of the gene encoding a Mr 35000 subunit of the vaccinia virus DNA-dependent RNA polymerase. J. Biol. Chem. 1991;266:13712–13718. [PubMed] [Google Scholar]
  • 13.Amegadzie B.Y., Holmes M.H., Cole N.B., Jones E.V., Earl P.L., Moss B. Identification, sequence, and expression of the gene encoding the second-largest subunit of the vaccinia virus DNA-dependent RNA polymerase. Virology. 1991;180:88–98. doi: 10.1016/0042-6822(91)90012-z. [DOI] [PubMed] [Google Scholar]
  • 14.Amegadzie B.Y., Ahn B.-Y., Moss B. Characterization of a 7-kilodalton subunit of vaccinia virus DNA-dependent RNA polymerase with structural similarities to the smallest subunit of eukaryotic RNA polymerase II. J. Virol. 1992;66:3003–3010. doi: 10.1128/jvi.66.5.3003-3010.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Antoine G., Scheiflinger F., Dorner F., Falkner F.G. The complete genomic sequence of the modified vaccinia Ankara strain: Comparison with other orthopoxviruses. Virology. 1998;244:365–396. doi: 10.1006/viro.1998.9123. [DOI] [PubMed] [Google Scholar]
  • 16.Baek S.H., Kwak J.Y., Lee S.H., Lee T., Ryu S.H., Uhlinger D.J. Lipase activities of p37, the major envelope protein of vaccinia virus. J. Biol. Chem. 1997;272:32042–32049. doi: 10.1074/jbc.272.51.32042. [DOI] [PubMed] [Google Scholar]
  • 17.Banham A.H., Smith G.L. Vaccinia virus gene B1R encodes a 34-kDa serine/threonine protein kinase that localizes in cytoplasmic factories and is packaged into virions. Virology. 1992;191:803–812. doi: 10.1016/0042-6822(92)90256-o. [DOI] [PubMed] [Google Scholar]
  • 18.Banham A.H., Smith G.L. Characterization of vaccinia virus gene B12R. J. Gen. Virol. 1993;74:2807–2812. doi: 10.1099/0022-1317-74-12-2807. [DOI] [PubMed] [Google Scholar]
  • 19.Baroudy B.M., Venkatesan S., Moss B. Incompletely base-paired flip-flop terminal loops link the two DNA strands of the vaccinia virus genome into one uninterrupted polynucleotide chain. Cell. 1982;28:315–324. doi: 10.1016/0092-8674(82)90349-x. [DOI] [PubMed] [Google Scholar]
  • 20.Bayliss C.D., Smith G.L. Vaccinia virion protein I8R has both DNA and RNA helicase activities: Implications for vaccinia virus transcription. J. Virol. 1996;70:794–800. doi: 10.1128/jvi.70.2.794-800.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Bayliss C.D., Wilcock D., Smith G.L. Stimulation of vaccinia virion DNA helicase I8R, but not A18R, by a vaccinia core protein L4R, an ssDNA binding protein. J. Gen. Virol. 1996;77:2827–2831. doi: 10.1099/0022-1317-77-11-2827. [DOI] [PubMed] [Google Scholar]
  • 22.Beattie E., Tartaglia J., Paoletti E. Vaccinia-virus encoded eIF-2α homolog abrogates the antiviral effect of interferon. Virology. 1991;183:419–422. doi: 10.1016/0042-6822(91)90158-8. [DOI] [PubMed] [Google Scholar]
  • 23.Bedson H.S., Dumbell K.R. Hybrids derived from the viruses of variola major and cowpox. J. Hyg. 1964;62:147–158. doi: 10.1017/s0022172400039887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Belle Isle H., Venkatesan S., Moss B. Cell-free translation of early and late mRNAs selected by hybridization to cloned DNA fragments derived from the left 14 million to 72 million daltons of the vaccinia virus genome. Virology. 1981;112:306–317. doi: 10.1016/0042-6822(81)90636-x. [DOI] [PubMed] [Google Scholar]
  • 25.Betakova T., Wolffe E.J., Moss B. Regulation of vaccinia virus morphogenesis: Phosphorylation of the A14L and A17L membrane proteins and C-terminal truncation of the A17L protein are dependent on the F10L kinase. J. Virol. 1999;73:3534–3543. doi: 10.1128/jvi.73.5.3534-3543.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Blasco R., Moss B. Extracellular vaccinia virus formation and cell-to-cell virus transmission are prevented by deletion of the gene encoding the 37000 Dalton outer envelope protein. J. Virol. 1991;65:5910–5920. doi: 10.1128/jvi.65.11.5910-5920.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Blasco R., Cole N.B., Moss B. Sequence analysis, expression, and deletion of a vaccinia virus gene encoding a homolog of profilin, a eukaryotic actin-binding protein. J. Virol. 1991;65:4598–4608. doi: 10.1128/jvi.65.9.4598-4608.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Blasco R., Sisler J.R., Moss B. Dissociation of progeny vaccinia virus from the cell membrane is regulated by a viral envelope glycoprotein: Effect of a point mutation in the lectin homology domain of the A34R gene. J. Virol. 1993;67:3319–3325. doi: 10.1128/jvi.67.6.3319-3325.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Blomquist M.C., Hunt L.T., Barker W.C. Vaccinia virus 19-kilodalton protein: Relationship to several mammalian proteins, including two growth factors. Proc. Natl. Acad. Sci. USA. 1984;81:7363–7367. doi: 10.1073/pnas.81.23.7363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Born T.L., Morrison L.A., Esteban D.J., VandenBos T., Thebeau L.G., Chen N., Spriggs M.K., Sims J.E., Buller R.M.L. A poxvirus protein that binds to and inactivates IL-18, and inhibits NK cell response. J. Immunol. 2000;164:3246–3254. doi: 10.4049/jimmunol.164.6.3246. [DOI] [PubMed] [Google Scholar]
  • 31.Breman J.G. In: Emerging Infections 4. Scheid W.M., Craig W.A., Hughes J.M., editors. ASM Press; Washington: 2000. Monkeypox: An emerging infection of humans? pp. 45–67. [Google Scholar]
  • 32.Brick D.J., Burke R.D., Minkley A.A., Upton C. Ectromelia virus virulence factor p28 acts upstream of caspase-3 in response to UV linght-induced apoptosis. J. Gen. Virol. 2000;81:1087–1097. doi: 10.1099/0022-1317-81-4-1087. [DOI] [PubMed] [Google Scholar]
  • 33.Brown C.K., Turner P.C., Moyer R.W. Molecular characterization of the vaccinia virus hemagglutinin gene. J. Virol. 1991;65:3598–3606. doi: 10.1128/jvi.65.7.3598-3606.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Broyles S.S., Fesler B.S. Vaccinia virus gene encoding a component of the viral early transcription factor. J. Virol. 1990;64:1523–1529. doi: 10.1128/jvi.64.4.1523-1529.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Broyles S.S., Moss B. Homology between RNA polymerase of poxviruses, prokaryotes, and eukaryotes: Nucleotide sequence and transcriptional analysis of vaccinia virus genes encoding 147-kDa and 22-kDa subunits. Proc. Natl. Acad. Sci. USA. 1986;83:3141–3145. doi: 10.1073/pnas.83.10.3141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Broyles S.S., Moss B. Identification of the vaccinia virus encoded nucleoside triphosphate phosphohydrolase I, a DNA-dependent ATPase. J. Virol. 1987;61:1738–1742. doi: 10.1128/jvi.61.5.1738-1742.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Bugert J.J., Darai G. Poxvirus homologues of cellular genes. Virus Genes. 2000;21:111–133. [PubMed] [Google Scholar]
  • 38.Buller R.M.L., Chakrabarti S., Moss B., Frederickson T. Cell proliferative response to vaccinia virus is mediated by VGF. Virology. 1988;164:182–192. doi: 10.1016/0042-6822(88)90635-6. [DOI] [PubMed] [Google Scholar]
  • 39.Calderara S., Xiang Y., Moss B. Orthopoxvirus IL-18 binding proteins: Affinities and antagonistic activities. Virology. 2001;279:619–623. doi: 10.1006/viro.2000.0689. [DOI] [PubMed] [Google Scholar]
  • 40.Cao J., Koop B.F., Upton C. A human homolog of the vaccinia virus HindIII K4L gene is a member of the phospholipase D superfamily. Virus Res. 1997;48:11–18. doi: 10.1016/s0168-1702(96)01422-0. [DOI] [PubMed] [Google Scholar]
  • 41.Cassetti M.C., Merchlinsky M., Wolffe E.J., Weisberg A.S., Moss B. DNA packaging mutant: Repression of the vaccinia virus A32 gene results in noninfectious, DNA-deficient, spherical, enveloped particles. J. Virol. 1998;72:5769–5780. doi: 10.1128/jvi.72.7.5769-5780.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Chang H.-W., Watson J.C., Jacobs B.L. The E3L gene of vaccinia virus encodes an inhibitor of the interferon-induced, double-stranded RNA-dependent protein kinase. Proc. Natl. Acad. Sci. USA. 1992;89:4825–4829. doi: 10.1073/pnas.89.11.4825. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Chen W., Drillen R., Spehner D., Buller R.M. Restricted replication of ectromelia virus in cell culture correlates with mutations in virus-encoded host range gene. Virology. 1992;187:433–442. doi: 10.1016/0042-6822(92)90445-u. [DOI] [PubMed] [Google Scholar]
  • 44.Chertov O.Yu., Telezhinskaya I.N., Ziatseva E.V., Golubeva T.B., Zinov'ev V.V., Ovechkina L.G., Mazkova L.B., Malygin E.G. Amino acid sequence determination of vaccinia virus immunodominant protein p34 and identification of the gene. Biomed. Sci. 1991;2:151–154. [PubMed] [Google Scholar]
  • 45.Christen L.M., Sanders M., Wiler C., Niles E.G. Vaccinia virus nucleotide triphosphate phosphohydrolase I is an essential viral early gene transcription termination factor. Virology. 1998;245:360–371. doi: 10.1006/viro.1998.9177. [DOI] [PubMed] [Google Scholar]
  • 46.Chung C.-S., Hsiao J.-C., Chang Y.-S., Chang W. A27L protein mediates vaccinia virus interaction with cell surface heparan sulfate. J. Virol. 1998;72:1577–1585. doi: 10.1128/jvi.72.2.1577-1585.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.Cooper J.A., Wittek R., Moss B. Extension of the transcriptional map of the left end of the vaccinia virus genome to 21 kilobase pairs. J. Virol. 1981;39:733–745. doi: 10.1128/jvi.39.3.733-745.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.da Fonseca F.G., Weisberg A., Wolffe E.J., Moss B. Characterization of the vaccinia virus H3L envelope protein: Topology and post-translational membrane insertion via the C-terminal hydrophobic tail. J. Virol. 2000;74:7508–7517. doi: 10.1128/jvi.74.16.7508-7517.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.Damaso C.R.A., Esposito J.J., Condit R.C., Moussatche N. An emergent poxvirus from humans and cattle in Rio de Janeiro State: Cantagalo virus may derive from Brazilian smallpox vaccine. Virology. 2000;277:439–449. doi: 10.1006/viro.2000.0603. [DOI] [PubMed] [Google Scholar]
  • 50.Davies M.V., Elroy-Stein O., Jagus R., Moss B., Kaufman R.J. The vaccinia virus K3L gene product potentiates translation by inhibiting double-stranded-RNA activated protein kinase and phosphorylation of the α subunit of eukaryotic initiation factor 2. J. Virol. 1991;66:1943–1950. doi: 10.1128/jvi.66.4.1943-1950.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51.Davis R.E., Mathews C.K. Acidic C terminus of vaccinia virus DNA-binding protein interacts with ribonucleotide reductase. Proc. Natl. Acad. Sci. USA. 1993;90:745–749. doi: 10.1073/pnas.90.2.745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.Douglass N., Dumbell K. Independent evolution of monkeypox and variola viruses. J. Virol. 1992;66:7565–7567. doi: 10.1128/jvi.66.12.7565-7567.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53.Duncan S.A., Smith G.L. Vaccinia virus gene SalF5R is non-essential for virus replication in vitro and in vivo. J. Gen. Virol. 1992;73:1235–1242. doi: 10.1099/0022-1317-73-5-1235. [DOI] [PubMed] [Google Scholar]
  • 54.Dyster L.M., Niles E.G. Genetic and biochemical characterization of vaccinia virus genes D2L and D3R which encode virion structural proteins. Virology. 1991;182:455–467. doi: 10.1016/0042-6822(91)90586-z. [DOI] [PubMed] [Google Scholar]
  • 55.Earl P.L., Jones E.V., Moss B. Homology between DNA polymerase of poxviruses, herpesviruses, and adenoviruses: Nucleotide sequence of the vaccinia virus DNA polymerase gene. Proc. Natl. Acad. Sci. USA. 1986;83:3659–3663. doi: 10.1073/pnas.83.11.3659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56.Englestad M., Howard S.T., Smith G.L. A constitutively expressed vaccinia virus gene encodes a 42-kDa glycoprotein related to complement control factors that forms part of the extracellular virus envelope. Virology. 1992;188:801–810. doi: 10.1016/0042-6822(92)90535-w. [DOI] [PubMed] [Google Scholar]
  • 57.Engelstad M., Smith G.L. The vaccinia virus 42-kDa envelope protein is required for the envelopment and egress of extracellular virus and for virus virulence. Virology. 1993;194:627–637. doi: 10.1006/viro.1993.1302. [DOI] [PubMed] [Google Scholar]
  • 58.Esposito J.J., Knight J.C. Nucleotide sequence of the thymidine kinase gene region of monkeypox and variola viruses. Virology. 1984;135:561–567. doi: 10.1016/0042-6822(84)90212-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 59.Esposito J.J., Knight J.C. Orthopoxvirus DNA: A comparison of restriction profiles and maps. Virology. 1985;143:230–251. doi: 10.1016/0042-6822(85)90111-4. [DOI] [PubMed] [Google Scholar]
  • 60.Esposito L.J., Fenner F. In: Fields Virology. Knipe D.M., Howley P.M., editors. Lippincott, Williams & Wilkins; Philadelphia: 2001. Poxviruses; pp. 2885–2921. [Google Scholar]
  • 61.Evans E., Klemperer N., Ghosh R., Traktman P. The vaccinia virus D5 protein, which is required for DNA replication, is a nucleic acid-independent nucleoside triphosphatase. J. Virol. 1995;69:5353–5361. doi: 10.1128/jvi.69.9.5353-5361.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62.Fenner F. The eradication of smallpox. Prog. Med. Virol. 1977;23:1–21. [PubMed] [Google Scholar]
  • 63.Fenner F., Henderson D.A., Arita I., Jezek Z., Ladnyi I.D. Smallpox and Its Eradication. World Health Organization; Geneva: 1988. [Google Scholar]
  • 64.Fenner F., Wittek R., Dumbell K.R. The Orthopoxviruses. Academic Press; San Diego: 1989. [Google Scholar]
  • 65.Frischknecht F., Moreau V., Rottger S., Gonfloni S., Reckmann I., Superti-Furga G., Way M. Actin-based motility of vaccinia virus mimics receptor tyrosine kinase signalling. Nature. 1999;401:926–929. doi: 10.1038/44860. [DOI] [PubMed] [Google Scholar]
  • 66.Funahashi S., Sato T., Shida H. Cloning and characterization of the gene encoding the major protein of the A-type inclusion body of cowpox virus. J. Gen. Virol. 1988;69:35–47. doi: 10.1099/0022-1317-69-1-35. [DOI] [PubMed] [Google Scholar]
  • 67.Garon C.F., Barbosa E., Moss B. Visualization of an inverted terminal repetition in vaccinia virus DNA. Proc. Natl. Acad. Sci. USA. 1978;75:4863–4867. doi: 10.1073/pnas.75.10.4863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 68.Gershon P.D., Moss B. Early transcription factor subunits are encoded by vaccinia virus late genes. Proc. Natl. Acad. Sci. USA. 1990;87:4401–4405. doi: 10.1073/pnas.87.11.4401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 69.Gershon P.D., Ahn B.-Y., Garfield M., Moss B. Poly(A) polymerase and a dissociable polyadenylation stimulatory factor encoded by vaccinia virus. Cell. 1991;66:1269–1278. doi: 10.1016/0092-8674(91)90048-4. [DOI] [PubMed] [Google Scholar]
  • 70.Gillard S., Spehner D., Drillien R., Kirn A. Localization and sequence of a vaccinia virus gene required for multiplication in human cells. Proc. Natl. Acad. Sci. USA. 1986;83:5573–5577. doi: 10.1073/pnas.83.15.5573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 71.Goebel S.J., Johnson G.P., Perkus M.E., Davis S.W., Winslow J.P., Paoletti E. The complete DNA sequence of vaccinia virus. Virology. 1990;179:247–266. doi: 10.1016/0042-6822(90)90294-2. [DOI] [PubMed] [Google Scholar]
  • 71.Virology179, 517–563.
  • 72.Golini F., Kates J.R. Transcriptional and translational analysis of a strongly expressed early region of the vaccinia virus genome. J. Virol. 1984;49:459–470. doi: 10.1128/jvi.49.2.459-470.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 73.Graham K.A., Lalani A.S., Macen J.L., Ness T.L., Barry M., Liu L.-Y., Lucas A., Clark-Lewis I., Moyer R.W., McFadden G. The T1/35kDa family of poxvirus-secreted proteins bind chemokines and modulate leukocyte influx into virus-infected tissues. Virology. 1997;229:12–24. doi: 10.1006/viro.1996.8423. [DOI] [PubMed] [Google Scholar]
  • 74.Gross C.H., Shuman S. The nucleoside triphosphatase and helicase activities of vaccinias virus NPH-II are essential for virus replication. J. Virol. 1998;72:4729–4736. doi: 10.1128/jvi.72.6.4729-4736.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 75.Guan K., Broyles S.S., Dixon J.E. A Tyr/Ser protein phosphatase encoded by vaccinia virus. Nature. 1991;350:359–362. doi: 10.1038/350359a0. [DOI] [PubMed] [Google Scholar]
  • 76.Gvakharia B.O., Koonin E., Mathews C. Vaccinia virus G4L gene encodes a second glutaredoxin. Virology. 1996;226:408–411. doi: 10.1006/viro.1996.0669. [DOI] [PubMed] [Google Scholar]
  • 77.Hirt P., Hiller G., Wittek R. Localization and fine structure of a vaccinia virus gene encoding an envelope antigen. J. Virol. 1986;58:757–764. doi: 10.1128/jvi.58.3.757-764.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 78.Hooda-Dhingra U., Patel D.D., Pickup D.J., Condit R.C. Fine structure mapping and phenotypic analysis of five temperature-sensitive mutations in the second largest subunit of vaccinia virus DNA-dependent RNA polymerase. Virology. 1990;174:60–69. doi: 10.1016/0042-6822(90)90054-u. [DOI] [PubMed] [Google Scholar]
  • 79.Hsiao J.-C., Chung C.-S., Chang W. Vaccinia virus envelope D8L protein binds to cell surface chondroitin sulfate and mediates the adsorption of intracellular mature virions to cells. J. Virol. 1999;73:8750–8761. doi: 10.1128/jvi.73.10.8750-8761.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 80.Hu F., Smith C.A., Pickup D.J. Cowpox virus contains two copies of a early gene encoding a soluble secreted form of the type II TNF receptor. Virology. 1994;204:343–356. doi: 10.1006/viro.1994.1539. [DOI] [PubMed] [Google Scholar]
  • 81.Hu X., Wolffe E.J., Weisberg A.S., Carroll L.J., Moss B. Repression of the A8L gene, encoding the early transcription factor 82-kilodalton subunit, inhibits morphogenesis of vaccinia virions. J. Virol. 1998;72:104–112. doi: 10.1128/jvi.72.1.104-112.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 82.Hughes S.J., Johnston L.H., De Carlos A., Smith G.L. Vaccinia virus encodes an active thymidylate kinase that complements a cdc8 mutant of Saccharomyces cerevisiae. J. Biol. Chem. 1991;266:20103–20109. [PubMed] [Google Scholar]
  • 83.Hutin Y.J.F., Williams R.J., Malfait P., Pebody R., Loparev V.N., Ropp S.L., Rodriguez M., Knight J.C., Tshioko F.K., Khan A.S., Szczeniowski M.V., Esposito J.J. Outbreak of human monkeypox, Democratic Republic of Congo, 1996–1997. Emerg. Infect. Dis. 2001;7:434–438. doi: 10.3201/eid0703.010311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 84.Ichihashi Y., Takahashi T., Oie M. Identification of a vaccinia virus penetration protein. Virology. 1994;202:834–843. doi: 10.1006/viro.1994.1405. [DOI] [PubMed] [Google Scholar]
  • 85.Isaacs S.N., Wolffe E.J., Payne L.G., Moss B. Characterization of a vaccinia virus-encoded 42-kilodalton class I membrane glycoprotein component of the extracellular virus envelope. J. Virol. 1992;66:7217–7224. doi: 10.1128/jvi.66.12.7217-7224.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 86.Ishii K., Moss B. Role of vaccinia virus A20R protein in DNA replication: Construction and characterization of temperature-sensitive mutants. J. Virol. 2001;75:1656–1663. doi: 10.1128/JVI.75.4.1656-1663.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 87.Jezek Z., Fenner F. Human monkeypox. Monogr. Virol. 1988;17:1–140. [Google Scholar]
  • 88.Kane E.M., Shuman S. Temperature-sensitive mutations in the vaccinia virus H4 gene encoding a component of the virion RNA polymerase. J. Virol. 1992;66:5752–5762. doi: 10.1128/jvi.66.10.5752-5762.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 89.Kane E.M., Shuman S. Vaccinia virus morphogenesis is blocked by a temperature-sensitive mutation in the I7 gene that encodes a virion component. J. Virol. 1993;67:2689–2698. doi: 10.1128/jvi.67.5.2689-2698.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 90.Kao S.-Y., Bauer W.R. Biosynthesis and phosphorylation of vaccinia virus structural protein VP11. Virology. 1987;159:339–407. doi: 10.1016/0042-6822(87)90479-x. [DOI] [PubMed] [Google Scholar]
  • 91.Keck J.G., Baldick C.J., Moss B. Role of DNA replication in vaccinia virus gene expression: A naked template is required for transcription of three late trans-activator genes. Cell. 1990;61:801–809. doi: 10.1016/0092-8674(90)90190-p. [DOI] [PubMed] [Google Scholar]
  • 92.Keck J.G., Feigenbaum F., Moss B. Mutations analysis of a predicted zinc-binding motif in the 26-kilodalton protein encoded by the vaccinia virus A2L gene: Correlation of zinc binding with late transcriptional transactivation activity. J. Virol. 1993;67:5749–5753. doi: 10.1128/jvi.67.10.5749-5753.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 93.Keck J.G., Kovacs G.R., Moss B. Overexpression, purification, and late transcription factor activity of the 17-kilodalton protein encoded by the vaccinia virus A1L gene. J. Virol. 1993;67:5740–5748. doi: 10.1128/jvi.67.10.5740-5748.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 94.Kerr S.M., Smith G.L. Vaccinia virus encodes a polypeptide with DNA ligase activity. Nucleic Acids Res. 1989;17:9039–9050. doi: 10.1093/nar/17.22.9039. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 95.Kettle S., Alcami A., Khanna A., Ehret R., Jassoy C., Smith G.L. Vaccinia virus serpin B13R (SPI-2) inhibits interleukin-1-β converting enzyme and protects virus-infected cells from TNF- and Fas-mediated apoptosis, but does not prevent IL-1β-induced fever. J. Gen. Virol. 1997;78:677–685. doi: 10.1099/0022-1317-78-3-677. [DOI] [PubMed] [Google Scholar]
  • 96.Klemperer N., McDonald W., Boyle K., Unger B., Traktman P. The A20R protein is a stoichiometric component of the processive form of vaccinia virus DNA polymerase. J. Virol. 2001;75:12298–12307. doi: 10.1128/JVI.75.24.12298-12307.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 97.Koonin E.V. A highly conserved sequence motif defining the family of MutT-related proteins from eubacteria, eukaryotes and viruses. Nucleic Acids Res. 1993;21:4847. doi: 10.1093/nar/21.20.4847. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 98.Kotwal G.J., Moss B. Vaccinia virus encodes a secretory polypeptide structurally related to complement control proteins. Nature. 1988;335:176–178. doi: 10.1038/335176a0. [DOI] [PubMed] [Google Scholar]
  • 99.Kotwal G.J., Moss B. Vaccinia virus encodes two proteins that are structurally related to members of the plasma serine protease inhibitor superfamily. J. Virol. 1989;63:600–606. doi: 10.1128/jvi.63.2.600-606.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 100.Kovacs G.R., Moss B. The vaccinia virus H5R gene encodes late gene transcription factor 4: Purification, cloning and overexpression. J. Virol. 1996;70:6796–6802. doi: 10.1128/jvi.70.10.6796-6802.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 101.Kovacs G.R., Vasilakis N., Moss B. Regulation of viral intermediate gene expression by the vaccinia virus B1 protein kinase. J. Virol. 2001;75:4048–4055. doi: 10.1128/JVI.75.9.4048-4055.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 102.Kumar, S, Tamura, K, and, Nei, M. 1993, MEGA: Molecular Evolutionary Genetics Analysis, Pennsylvania State Univ. University Park, PA.
  • 103.Law K.M., Smith G.L. A vaccinia serine protease inhibitor which prevents virus-induced cell fusion. J. Gen. Virol. 1992;73:549–557. doi: 10.1099/0022-1317-73-3-549. [DOI] [PubMed] [Google Scholar]
  • 104.Lee-Chen G.-J., Bourgeois N., Davidson K., Condit R.C., Niles E.G. Structure of the transcription initiation and termination sequences of seven early genes in the vaccinia virus HindIII D fragment. Virology. 1988;163:64–79. doi: 10.1016/0042-6822(88)90234-6. [DOI] [PubMed] [Google Scholar]
  • 105.Lin S., Chen W., Broyles S.S. The vaccinia virus B1R gene product is a serine/threonine protein kinase. J. Virol. 1992;66:2717–2723. doi: 10.1128/jvi.66.5.2717-2723.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 106.Lin S., Broyles S.S. Vaccinia protein kinase 2: A second essential serine/threonine protein kinase encoded by vaccinia virus. Proc. Natl. Acad. Sci. USA. 1994;91:7653–7657. doi: 10.1073/pnas.91.16.7653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 107.Lin C.L., Chung C.S., Heine H.G., Chang W. Vaccinia virus envelope H3L protein binds to cell surface heparan sulfate and is important for intracellular mature virion morphogenesis and virus infection in vitro and in vivo. J. Virol. 2000;74:3353–3365. doi: 10.1128/jvi.74.7.3353-3365.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 108.Maa J.-S., Esteban M. Structural and functional characterization of cell surface binding protein of vaccinia virus. J. Virol. 1987;61:3910–3919. doi: 10.1128/jvi.61.12.3910-3919.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 109.Maa J.-S., Rodriguez J.F., Esteban M. Structural and functional characterization of a cell surface binding protein of vaccinia virus. J. Biol. Chem. 1990;265:1569–1577. [PubMed] [Google Scholar]
  • 110.Mackett M., Archard L.C. Conservation and variation in orthopoxvirus genome structure. J. Gen. Virol. 1979;45:683–701. doi: 10.1099/0022-1317-45-3-683. [DOI] [PubMed] [Google Scholar]
  • 111.Marennikova S.S., Seluhina E.M., Mal'ceva N.N., Cimiskjan K.L., Macevic G.R. Isolation and properties of the causal agent of a new variola-like disease (monkeypox) in man. Bull. World Health Organ. 1972;46:599–611. [PMC free article] [PubMed] [Google Scholar]
  • 112.Marennikova S.S., Shchelkunov S.N. Orthopoxviruses Pathogenic for Humans. KMK Press Ltd; Moscow: 1998. [Google Scholar]
  • 113.Martin K.H., Grosenbach D.W., Franke C.A., Hruby D.E. Identification and analysis of three myristylated vaccinia virus late proteins. J. Virol. 1997;71:5218–5226. doi: 10.1128/jvi.71.7.5218-5226.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 114.Massung R.F., Knight J.C., Esposito J.J. Topography of variola smallpox virus inverted terminal repeats. Virology. 1995;211:350–355. doi: 10.1006/viro.1995.1416. [DOI] [PubMed] [Google Scholar]
  • 115.Massung R.F., Liu L.-I., Qi J., Knight J.C., Yuran T.E., Kerlavage A.R., Parsons J.M., Venter J.C., Esposito J. Analysis of the complete genome of smallpox variola major virus strain Bangladesh—1975. Virology. 1994;201:215–240. doi: 10.1006/viro.1994.1288. [DOI] [PubMed] [Google Scholar]
  • 116.McDonald W.F., Klemperer N., Traktman P. Characterization of a processive form of the vaccinia virus DNA polymerase. Virology. 1997;234:168–175. doi: 10.1006/viro.1997.8639. [DOI] [PubMed] [Google Scholar]
  • 117.McGeoch D.J. Protein sequence comparisons show that “pseudoproteases” encoded by the poxviruses and certain retroviruses belong to the deoxyuridine triphosphatase family. Nucleic Acids Res. 1990;18:4105–4110. doi: 10.1093/nar/18.14.4105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 118.McIntosh A.A.G., Smith G.L. Vaccinia virus glycoprotein A34R is required for infectivity of extracellular enveloped virus. J. Virol. 1996;70:272–281. doi: 10.1128/jvi.70.1.272-281.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 119.Meis R.J., Condid R.C. Genetic and molecular biological characterization of vaccinia virus gene which renders the virus dependent on isatin-b-thiosemicarbazone (IBT) Virology. 1991;182:442–454. doi: 10.1016/0042-6822(91)90585-y. [DOI] [PubMed] [Google Scholar]
  • 120.Merchlinsky M. Mutational analysis of the resolution sequence of vaccinia virus DNA—Essential sequence consists of 2 separate AT-rich regions highly conserved among poxviruses. J. Virol. 1990;64:5029–5035. doi: 10.1128/jvi.64.10.5029-5035.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 121.Moore J.B., Smith G.L. Steroid hormone synthesis by a vaccinia enzyme: A new type of virus virulence factor. EMBO J. 1992;11:1973–1980. doi: 10.1002/j.1460-2075.1992.tb05251.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 122.Morgan J.R., Roberts B.E. Organization of RNA transcripts from a vaccinia virus early gene cluster. J. Virol. 1984;51:283–297. doi: 10.1128/jvi.51.2.283-297.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 123.Morgan J.R., Cohen L.K., Roberts B.E. Identification of the DNA sequence encoding the large subunit of the mRNA-capping enzyme of vaccinia virus. J. Virol. 1984;52:206–214. doi: 10.1128/jvi.52.1.206-214.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 124.Moss B. In: Fields Virology. Knipe D.M., Howley P.M., editors. Lippincott, Williams & Wilkins; Philadelphia: 2001. Poxviridae: The viruses and their replication; pp. 2849–2883. [Google Scholar]
  • 125.Moss B., Shisler J.L. Immunology 101 at poxvirus U: Immune evasion genes. Semin. Immunol. 2001;13:59–66. doi: 10.1006/smim.2000.0296. [DOI] [PubMed] [Google Scholar]
  • 126.Mukinda V.B., Mwema G., Kilundu M., Heymann D.L., Khan A.S., Esposito J.J. Re-emergence of human monkeypox in Zaire in 1996. Monkeypox Epidemiologic Working Group. Lancet. 1997;349:1449–1450. doi: 10.1016/S0140-6736(05)63725-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 127.Najarro P., Traktman P., Lewis J.A. Vaccinia virus blocks gamma interferon signal transduction: Viral VH1 phosphatase reverses Stat1 activation. J. Virol. 2001;75:3185–3196. doi: 10.1128/JVI.75.7.3185-3196.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 128.Ng A., Tscharke D.C., Reading P.C., Smith G.L. The vaccinia virus A41L protein is a soluble 30 kDa glycoprotein that affects virus virulence. J. Gen. Virol. 2001;82:2095–2105. doi: 10.1099/0022-1317-82-9-2095. [DOI] [PubMed] [Google Scholar]
  • 129.Niles E.G., Seto J. Vaccinia virus gene D8 encodes a virion transmembrane protein. J. Virol. 1988;62:3772–3778. doi: 10.1128/jvi.62.10.3772-3778.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 130.Niles E.G., Lee-Chen G.-J., Shuman S., Moss B., Broyles S.S. Vaccinia virus gene D12L encodes the small subunit of the viral mRNA capping enzyme. Virology. 1989;172:513–522. doi: 10.1016/0042-6822(89)90194-3. [DOI] [PubMed] [Google Scholar]
  • 131.Noble J., Jr. A study of New and Old World monkeys to determine the likelihood of a simian reservoir of smallpox. Bull. World Health Organ. 1970;42:509–514. [PMC free article] [PubMed] [Google Scholar]
  • 132.Panicali D., Paoletti E. Construction of poxviruses as cloning vectors: Insertion of the thymidine kinase gene from herpes simplex into the DNA of infectious vaccinia virus. Proc. Natl. Acad. Sci. USA. 1982;79:4927–4931. doi: 10.1073/pnas.79.16.4927. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 133.Parkinson J.E., Smith G.L. Vaccinia virus gene A36R encodes a Mr 50K protein on the surface of extracellular enveloped virus. Virology. 1994;204:376–390. doi: 10.1006/viro.1994.1542. [DOI] [PubMed] [Google Scholar]
  • 134.Parkinson J.E., Sanderson C.M., Smith G.L. The vaccinia virus A38L gene product is a 33-kDa integral membrane glycoprotein. Virology. 1995;214:177–188. doi: 10.1006/viro.1995.9942. [DOI] [PubMed] [Google Scholar]
  • 135.Rajagopal I., Ahn B.-Y., Moss B. Roles of vaccinia virus ribonucleotide reductase and glutaredoxin in DNA precursor biosynthesis. J. Biol. Chem. 1995;270:27415–27418. doi: 10.1074/jbc.270.46.27415. [DOI] [PubMed] [Google Scholar]
  • 136.Ravanello M.P., Hruby D.E. Conditional lethal expression of the vaccinia virus L1R myristylated protein reveals a role in virion assembly. J. Virol. 1994;68:6401–6410. doi: 10.1128/jvi.68.10.6401-6410.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 137.Ray C.A., Black R.A., Kronheim S.R., Greenstreet T.A., Sleath P.R., Salvesen G.S., Pickup D.J. Viral inhibition of inflammation: Cowpox virus encodes an inhibitor of the interleukin-1β-converting enzyme. Cell. 1992;69:597–604. doi: 10.1016/0092-8674(92)90223-y. [DOI] [PubMed] [Google Scholar]
  • 138.Rempel R.E., Traktman P. Vaccinia virus-B1 kinase—Phenotypic analysis of temperature-sensitive mutants and enzymatic characterization of recombinant proteins. J. Virol. 1992;66:4413–4426. doi: 10.1128/jvi.66.7.4413-4426.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 139.Resenchuk S.M., Blinov V.M. ALIGNMENT SERVICE: Creation and processing of alignment of sequences of unlimited length. Comput. Appl. Biosci. 1995;11:7–11. doi: 10.1093/bioinformatics/11.1.7. [DOI] [PubMed] [Google Scholar]
  • 140.Rivas C., Gil J., Melkova Z., Esteban M., Diaz-Guerra M. Vaccinia virus E3L protein is an inhibitor of the interferon (IFN)-induced 2–5A synthetase enzyme. Virology. 1998;243:406–414. doi: 10.1006/viro.1998.9072. [DOI] [PubMed] [Google Scholar]
  • 141.Rochester S.C., Traktman P. Characterization of the single-stranded DNA binding protein encoded by the vaccinia virus I3 gene. J. Virol. 1998;72:2917–2926. doi: 10.1128/jvi.72.4.2917-2926.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 142.Rodriguez J.F., Esteban M. Mapping and nucleotide sequence of the vaccinia virus gene that encodes a 14-kilodalton fusion protein. J. Virol. 1987;61:3550–3554. doi: 10.1128/jvi.61.11.3550-3554.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 143.Rodriguez J.F., Kahn J.S., Esteban M. Molecular cloning, encoding sequence, and expression of vaccinia virus nucleic acid-dependent nucleoside triphosphatase gene. Proc. Natl. Acad. Sci. USA. 1986;83:9566–9570. doi: 10.1073/pnas.83.24.9566. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 144.Rodríguez D., Esteban M., Rodríguez J.R. Vaccinia virus A17L gene product is essential for an early step in virion morphogenesis. J. Virol. 1995;69:4640–4648. doi: 10.1128/jvi.69.8.4640-4648.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 145.Roper R.L., Moss B. Envelope formation is blocked by mutation of a sequence related to the HKD phospholipid metabolism motif in the vaccinia virus F13L protein. J. Virol. 1999;73:1108–1117. doi: 10.1128/jvi.73.2.1108-1117.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 146.Roper R.L., Payne L.G., Moss B. Extracellular vaccinia virus envelope glycoprotein encoded by the A33R gene. J. Virol. 1996;70:3753–3762. doi: 10.1128/jvi.70.6.3753-3762.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 147.Roper R.L., Wolffe E.J., Weisberg A., Moss B. The envelope protein encoded by the A33R gene is required for formation of actin-containing microvilli and efficient cell-to-cell spread of vaccinia virus. J. Virol. 1998;72:4129–4204. doi: 10.1128/jvi.72.5.4192-4204.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 148.Rosales R., Sutter G., Moss B. A cellular factor is required for transcription of vaccinia viral intermediate-stage genes. Proc. Natl. Acad. Sci. USA. 1994;91:3794–3798. doi: 10.1073/pnas.91.9.3794. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 149.Rosel J.L., Moss B. Transcriptional and translational mapping and nucleotide sequence analysis of a vaccinia virus gene encoding the precursor of the major core polypeptide 4b. J. Virol. 1985;56:830–838. doi: 10.1128/jvi.56.3.830-838.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 150.Rosel J.L., Earl P.L., Weir J.P., Moss B. Conserved TAAATG sequence at the transcriptional and translational initiation sites of vaccinia virus late genes deduced by structural and functional analysis of the HindIII-H genome fragment. J. Virol. 1986;60:436–449. doi: 10.1128/jvi.60.2.436-449.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 151.Ryazankina O.I., Muravlev A.I., Gutorov V.V., Mikrjukov N.N., Cheshenko I.O., Shchelkunov S.N. Comparative analysis of the conserved region of the orthopoxvirus genome encoding the 36K and 12K proteins. Virus Res. 1993;29:281–303. doi: 10.1016/0168-1702(93)90067-w. [DOI] [PubMed] [Google Scholar]
  • 152.Safronov P.F., Petrov N.A., Ryazankina O.I., Totmenin A.V., Shchelkunov S.N., Sandakhchiev L.S. Host range genes of cowpox virus. Dokl. Akad. Nauk. 1996;249:829–833. [PubMed] [Google Scholar]
  • 153.Saitou N., Nei M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 1987;4:406–425. doi: 10.1093/oxfordjournals.molbev.a040454. [DOI] [PubMed] [Google Scholar]
  • 154.Salmons T., Kuhn A., Wylie F., Schleich S., Rodriguez J.R., Rodriguez D., Esteban M., Griffiths G., Locker J.K. Vaccinia virus membrane proteins p8 and p16 are cotranslationally inserted into the rough endoplasmic reticulum and retained in the intermediate compartment. J. Virol. 1997;71:7404–7420. doi: 10.1128/jvi.71.10.7404-7420.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 155.Sanderson C.M., Parkinson J.E., Hollinshead M., Smith G.L. Overexpression of the vaccinia virus A38L integral membrane protein promotes Ca2+ influx into infected cells. J. Virol. 1996;70:905–914. doi: 10.1128/jvi.70.2.905-914.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 156.Sanz P., Moss B. Identification of a transcription factor, encoded by two vaccinia virus early genes, that regulates the intermediate stage of viral gene expression. Proc. Natl. Acad. Sci. USA. 1999;96:2692–2697. doi: 10.1073/pnas.96.6.2692. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 157.Sarov I., Joklik W.K. Studies on the nature and location of the capsid polypeptides of vaccinia virions. Virology. 1972;50:579–592. doi: 10.1016/0042-6822(72)90409-6. [DOI] [PubMed] [Google Scholar]
  • 158.Schmitt J.F.C., Stunnenberg H.G. Sequence and transcriptional analysis of the vaccinia virus HindIII I fragment. J. Virol. 1988;62:1889–1897. doi: 10.1128/jvi.62.6.1889-1897.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 159.Schnierle B.S., Gershon P.D., Moss B. Cap-specific mRNA (nucleotide-O2′-)-methyltransferase and poly(A) polymerase stimulatory activities of vaccinia virus are mediated by a single protein. Proc. Natl. Acad. Sci. USA. 1992;89:2897–2901. doi: 10.1073/pnas.89.7.2897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 160.Schwarz D.A., Katayama C.D., Hedrick S.M. Schlafen, a new family of growth regulatory genes that affect thymocyte development. Immunity. 1998;9:657–668. doi: 10.1016/s1074-7613(00)80663-9. [DOI] [PubMed] [Google Scholar]
  • 161.Seki M., Oie M., Ichihashi Y., Shida H. Hemadsorption and fusion inhibition activities of hemagglutinin analyzed by vaccinia virus mutants. Virology. 1990;175:372–384. doi: 10.1016/0042-6822(90)90422-n. [DOI] [PubMed] [Google Scholar]
  • 162.Senkevich T.G., Koonin E.V., Buller R.M.L. A poxvirus protein with a RING zinc finger motif is of crucial importance for virulence. Virology. 1994;198:118–128. doi: 10.1006/viro.1994.1014. [DOI] [PubMed] [Google Scholar]
  • 163.Senkevich T.G., White C.L., Koonin E.V., Moss B. A viral member of the ERV1/ALR protein family participates in a cytoplasmic pathway of disulfide bond formation. Proc. Natl. Acad. Sci. USA. 2000;97:12068–12073. doi: 10.1073/pnas.210397997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 164.Seregin S.V., Babkina I.N., Nesterov A.E., Sinyakov A.N., Shchelkunov S.N. Comparative studies of gamma-interferon receptor-like proteins of variola major and variola minor viruses. FEBS Lett. 1996;382:79–83. doi: 10.1016/0014-5793(96)00069-5. [DOI] [PubMed] [Google Scholar]
  • 165.Shchelkunov S.N., Marennikova S.S., Totmenin A.V., Blinov V.M., Chizhikov V.E., Gutorov V.V., Safronov P.F., Pozdnyakov S.G., Shelukhina E.M., Gashnikov P.V., Andzhaparidze O.G., Sandakhchiev L.S. Construction of clonoteques of fragments of smallpox virus DNA and structure-function investigation of viral host range genes. Dokl. Akad. Nauk. 1991;321:402–406. [PubMed] [Google Scholar]
  • 166.Shchelkunov S.N., Blinov V.M., Sandakhchiev L.S. Genes of variola and vaccinia viruses necessary to overcome the host protective mechanisms. FEBS Lett. 1993;319:80–83. doi: 10.1016/0014-5793(93)80041-r. [DOI] [PubMed] [Google Scholar]
  • 167.Shchelkunov S.N., Blinov V.M., Sandakhchiev L.S. Ankyrin-like proteins of variola and vaccinia viruses. FEBS Lett. 1993;319:163–165. doi: 10.1016/0014-5793(93)80059-4. [DOI] [PubMed] [Google Scholar]
  • 168.Shchelkunov S.N., Blinov V.M., Totmenin A.V., Marennikova S.S., Kolykhalov A.A., Frolov I.V., Chizhikov V.E., Gutorov V.V., Gashnikov P.V., Belanov E.F., Belavin P.A., Resenchuk S.M., Andzhaparidze O.G., Sandakhchiev L.S. Nucleotide sequence analysis of variola virus HindIII M, L, I genome fragments. Virus Res. 1993;27:25–35. doi: 10.1016/0168-1702(93)90110-9. [DOI] [PubMed] [Google Scholar]
  • 169.Shchelkunov S.N., Resenchuk S.M., Totmenin A.V., Blinov V.M., Marennikova S.S., Sandakhchiev L.S. Comparison of the genetic maps of variola and vaccinia viruses. FEBS Lett. 1993;327:321–324. doi: 10.1016/0014-5793(93)81013-p. [DOI] [PubMed] [Google Scholar]
  • 170.Shchelkunov S.N., Blinov V.M., Resenchuk S.M., Totmenin A.V., Olenina L.V., Chirikova G.B., Sandakhchiev L.S. Analysis of the nucleotide sequence of 53 kbp from the right terminus of the genome of variola major virus strain India-1967. Virus Res. 1994;34:207–236. doi: 10.1016/0168-1702(94)90125-2. [DOI] [PubMed] [Google Scholar]
  • 171.Shchelkunov S.N., Massung R.F., Esposito J.J. Comparison of the genome DNA sequences of Bangladesh-1975 and India-1967 variola viruses. Virus. Res. 1995;36:107–118. doi: 10.1016/0168-1702(94)00113-q. [DOI] [PubMed] [Google Scholar]
  • 172.Shchelkunov S.N., Safronov P.F., Totmenin A.V., Petrov N.A., Ryazankina O.I., Gutorov V.V., Kotwal G.J. The genomic sequence analysis of the left and right species-specific terminal region of a cowpox virus strain reveals unique sequences and a cluster of intact ORFs for immunomodulatory and host range proteins. Virology. 1998;243:432–460. doi: 10.1006/viro.1998.9039. [DOI] [PubMed] [Google Scholar]
  • 173.Shchelkunov S.N., Totmenin A.V., Loparev V.N., Safronov P.F., Gutorov V.V., Chizhikov V.E., Knight J.C., Parsons J.M., Massung R.F., Esposito J.J. Alastrim smallpox variola minor virus genome DNA sequences. Virology. 2000;266:361–386. doi: 10.1006/viro.1999.0086. [DOI] [PubMed] [Google Scholar]
  • 174.Shchelkunov S.N., Totmenin A.V., Babkin I.V., Safronov P.F., Ryazankina O.I., Petrov N.A., Gutorov V.V., Uvarova E.A., Mikheev M.V., Sisler J.R., Esposito J.J., Jahrling P.B., Moss B., Sandakhchiev L.S. Human monkeypox and smallpox viruses: Genomic comparison. FEBS Lett. 2001;509:66–70. doi: 10.1016/S0014-5793(01)03144-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 175.Shida H. Nucleotide sequence of the vaccinia virus hemagglutinin gene. Virology. 1986;150:451–462. doi: 10.1016/0042-6822(86)90309-0. [DOI] [PubMed] [Google Scholar]
  • 176.Shors T., Keck J.G., Moss B. Down regulation of gene expression by the vaccinia virus D10 protein. J. Virol. 1999;73:791–796. doi: 10.1128/jvi.73.1.791-796.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 177.Shuman S. Vaccinia virus RNA helicase: An essential enzyme related to the DE-II family of RNA-dependent NTPases. Proc. Natl. Acad. Sci. USA. 1992;89:10935–10939. doi: 10.1073/pnas.89.22.10935. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 178.Shuman S., Morham S.G. Domain structure of vaccinia virus mRNA capping enzyme. J. Biol. Chem. 1990;265:11967–11972. [PubMed] [Google Scholar]
  • 179.Shuman S., Moss B. Identification of a vaccinia virus gene encoding a type I DNA topoisomerase. Proc. Natl. Acad. Sci. USA. 1987;84:7478–7482. doi: 10.1073/pnas.84.21.7478. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 180.Simpson D.A., Condit R.C. Vaccinia virus gene A18R encodes an essential DNA helicase. J. Virol. 1995;69:6131–6139. doi: 10.1128/jvi.69.10.6131-6139.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 181.Slabaugh M.B., Roseman N., Davis R., Matthews C. Vaccinia virus encoded ribonucleotide reductase: Sequence conservation of the gene for the small subunit and its amplification in hydroxyurea-resistant mutants. J. Virol. 1988;62:519–527. doi: 10.1128/jvi.62.2.519-527.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 182.Smith G.L., de Carlos A., Chan Y.S. Vaccinia virus encodes a thymidylate kinase gene: Sequence and transcriptional mapping. Nucleic Acids Res. 1989;17:7581–7590. doi: 10.1093/nar/17.19.7581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 183.Smith G.L., Chan Y.S., Kerr S.M. Transcriptional mapping and nucleotide sequence of a vaccinia virus gene encoding a polypeptide with extensive homology to DNA ligases. Nucleic Acids Res. 1989;17:9051–9062. doi: 10.1093/nar/17.22.9051. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 184.Smith G.L., Howard S.T., Chan Y.S. Vaccinia virus encodes a family of genes with homology to serine proteinase inhibitors. J. Gen. Virol. 1989;70:2333–2343. doi: 10.1099/0022-1317-70-9-2333. [DOI] [PubMed] [Google Scholar]
  • 185.Smith S.A., Mullin N.P., Parkinson J., Shchelkunov S.N., Totmenin A.V., Loparev V.N., Srisatjaluk R., Reynolds D.N., Keeling K.L., Justus D.E., Barlow P.N., Kotwal G.J. Conserved surface-exposed K/R-X-K/R motifs and net positive charge on poxvirus complement control proteins serve as putative heparin binding sites and contribute to inhibition of molecular interactions with human endothelial cells: A novel mechanism for evasion of host defense. J. Virol. 2000;74:5659–5666. doi: 10.1128/jvi.74.12.5659-5666.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 186.Smith C.A., Smith T.D., Smolak P.J., Friend D., Hagen H., Gerhart M., Park L., Pickup D.J., Torrance D., Mohler K., Schooley K., Goodwin R.G. Poxvirus genomes encode a secreted, soluble protein that preferentially inhibits β chemokine activity yet lacks sequence homology to known chemokine receptors. Virology. 1997;236:316–327. doi: 10.1006/viro.1997.8730. [DOI] [PubMed] [Google Scholar]
  • 187.Spehner D., Gillard S., Drillien R., Kirn A. A cowpox virus gene required for multiplication in Chinese hamster ovary cells. J. Virol. 1988;62:1297–1304. doi: 10.1128/jvi.62.4.1297-1304.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 188.Spriggs M.K., Hruby D.E., Maliszewski C.R., Pickup D.J., Sims J.E., Buller R.M.L., Van Slyke J. Vaccinia and cowpox viruses encode a novel secreted interleukin-1-binding protein. Cell. 1992;71:145–152. doi: 10.1016/0092-8674(92)90273-f. [DOI] [PubMed] [Google Scholar]
  • 189.Stuart D.T., Upton C., Higman M.A., Niles E.G., McFadden G. A poxvirus-encoded uracil DNA glycosylase is essential for virus viability. J. Virol. 1993;67:2503–2512. doi: 10.1128/jvi.67.5.2503-2512.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 190.Sung T.-C., Roper R.L., Zhang Y., Rudge S.A., Temel R., Hammond S.M., Morris A.J., Moss B., Engebrecht J., Frohman M.A. Mutagenesis of phospholipase D defines a superfamily including a trans-Golgi viral protein required for poxvirus pathogenicity. EMBO J. 1997;16:4519–4530. doi: 10.1093/emboj/16.15.4519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 191.Symons J.A., Alcami A., Smith G.L. Vaccinia virus encodes a soluble type I interferon receptor of novel structure and broad species specificity. Cell. 1995;81:551–560. doi: 10.1016/0092-8674(95)90076-4. [DOI] [PubMed] [Google Scholar]
  • 192.Takahashi T., Oie M., Ichihashi Y. N-terminal amino acid sequences of vaccinia virus structural proteins. Virology. 1994;202:844–852. doi: 10.1006/viro.1994.1406. [DOI] [PubMed] [Google Scholar]
  • 193.Tamin A., Villarreal E.C., Weinrich S.L., Hruby D.E. Nucleotide sequence and molecular genetic analysis of the vaccinia virus HindIII N/M region encoding the genes responsible for resistance to α-amanitin. Virology. 1988;165:141–150. doi: 10.1016/0042-6822(88)90667-8. [DOI] [PubMed] [Google Scholar]
  • 194.Tengelsen L.A., Slabaugh M.B., Bibler J.K., Hruby D.E. Nucleotide sequence and molecular genetic analysis of the large subunit of ribonucleotide reductase encoded by vaccinia virus. Virology. 1988;164:121–131. doi: 10.1016/0042-6822(88)90627-7. [DOI] [PubMed] [Google Scholar]
  • 195.Thompson J.D., Higgins D.G., Gibson T.J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994;22:4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 196.Traktman P., Caligiuri A., Jesty S.A., Sankar U. Temperature-sensitive mutants with lesions in the vaccinia virus F10 kinase undergo arrest at the earliest stage of morphogenesis. J. Virol. 1995;69:6581–6587. doi: 10.1128/jvi.69.10.6581-6587.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 197.Turner P.C., Baquero M.T., Yuan S., Thoennes S.R., Moyer R.W. The cowpox virus serpin SPI-3 complexes with and inhibits urokinase-type and tissue-type plasminogen activators and plasmin. Virology. 2000;272:267–280. doi: 10.1006/viro.2000.0377. [DOI] [PubMed] [Google Scholar]
  • 198.Ueda Y., Morikawa S., Matsuura Y. Identification and nucleotide sequence of the gene encoding a surface antigen induced by vaccinia virus. Virology. 1990;177:588–594. doi: 10.1016/0042-6822(90)90524-u. [DOI] [PubMed] [Google Scholar]
  • 199.Upton C., Macen J.L., Schreiber M., McFadden G. Myxoma virus expresses secreted protein with homology to the tumor necrosis factor receptor gene family that contributes to viral virulence. Virology. 1991;184:370–382. doi: 10.1016/0042-6822(91)90853-4. [DOI] [PubMed] [Google Scholar]
  • 200.Upton C., Schiff L., Rice S.A., Dowdeswell T., Yang X., McFadden G. A poxvirus protein with a RING finger motif binds zinc and localizes in virus factories. J. Virol. 1994;68:4186–4195. doi: 10.1128/jvi.68.7.4186-4195.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 201.Upton C., Stuart D.T., McFadden G. Identification of a poxvirus gene encoding a uracil DNA glycosylase. Proc. Natl. Acad. Sci. USA. 1993;90:4518–4522. doi: 10.1073/pnas.90.10.4518. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 202.Van Eijl H., Hollinshead M., Smith G.L. The vaccinia virus A36R protein is a type Ib membrane protein present on intracellular but not extracellular enveloped virus particles. Virology. 2000;271:26–36. doi: 10.1006/viro.2000.0260. [DOI] [PubMed] [Google Scholar]
  • 203.Van Meir E., Wittek R. Fine structure of the vaccinia virus gene encoding the precursor of the major core protein 4a. Arch. Virol. 1988;102:19–27. doi: 10.1007/BF01315559. [DOI] [PubMed] [Google Scholar]
  • 204.Venkatesan S., Gershowitz A., Moss B. Complete nucleotide sequences of two adjacent early vaccinia virus genes located within the inverted terminal repetition. J. Virol. 1982;44:637–646. doi: 10.1128/jvi.44.2.637-646.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 205.Wang S., Shuman S. Vaccinia virus morphogenesis is blocked by temperature-sensitive mutations in the F10 gene, which encodes protein kinase 2. J. Virol. 1995;69:6376–6388. doi: 10.1128/jvi.69.10.6376-6388.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 206.Wang S.P., Shuman S. A temperature-sensitive mutation of the vaccinia virus E11 gene encoding a 15-kDa virion component. Virology. 1996;216:252–257. doi: 10.1006/viro.1996.0057. [DOI] [PubMed] [Google Scholar]
  • 207.Weinrich S.L., Hruby D.E. A tandemly-oriented late gene cluster within the vaccinia virus genome. Nucleic Acids Res. 1986;14:3003–3016. doi: 10.1093/nar/14.7.3003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 208.Weir J.P., Moss B. Nucleotide sequence of the vaccinia virus thymidine kinase gene and the nature of spontaneous frameshift mutations. J. Virol. 1983;46:530–537. doi: 10.1128/jvi.46.2.530-537.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 209.White C.L., Weisberg A.S., Moss B. A glutaredoxin, encoded by the G4L gene of vaccinia virus, is essential for virion morphogenesis. J. Virol. 2000;74:9175–9183. doi: 10.1128/jvi.74.19.9175-9183.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 210.Whitehead S.S., Hruby D.E. A transcriptionally controlled trans-processing assay: Putative identification of a vaccinia virus-encoded proteinase which cleaves precursor protein P25K. J. Virol. 1994;68:7603–7608. doi: 10.1128/jvi.68.11.7603-7608.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 211.Williams O., Wolffe E.I., Weisberg A.S., Merchlinsky M. Vaccinia virus WR gene A5L is required for morphogenesis of mature virions. J. Virol. 1999;73:4590–4599. doi: 10.1128/jvi.73.6.4590-4599.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 212.Wittek R., Moss B. Tandem repeats within the inverted terminal repetition of vaccinia virus DNA. Cell. 1980;21:277–284. doi: 10.1016/0092-8674(80)90135-x. [DOI] [PubMed] [Google Scholar]
  • 213.Wittek R., Menna A., Muller K., Schumperli D., Bosley P.G., Wyler R. Inverted terminal repeats in rabbit poxvirus and vaccinia virus DNA. J. Virol. 1978;28:171–181. doi: 10.1128/jvi.28.1.171-181.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 214.Wolffe E.J., Isaacs S.N., Moss B. Deletion of the vaccinia virus B5R gene encoding a 42-kilodalton membrane glycoprotein inhibits extracellular virus envelope formation and dissemination. J. Virol. 1993;67:4732–4741. doi: 10.1128/jvi.67.8.4732-4741.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 215.Wolffe E.J., Moore D.M., Peter P.J., Moss B. Vaccinia virus A17L open reading frame encodes an essential component of nascent viral membranes that is required to initiate morphogenesis. J. Virol. 1996;70:2797–2808. doi: 10.1128/jvi.70.5.2797-2808.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 216.Wolffe E.J., Katz E., Weisberg A., Moss B. The A34R glycoprotein gene is required for induction of specialized actin-containing microvilli and efficient cell-to-cell transmission of vaccinia virus. J. Virol. 1997;71:3904–3915. doi: 10.1128/jvi.71.5.3904-3915.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 217.Wolffe E.J., Weisberg A.S., Moss B. Role for the vaccinia virus A36R outer envelope protein in the formation of virus-tipped actin-containing microvilli and cell-to-cell virus spread. Virology. 1998;244:20–26. doi: 10.1006/viro.1998.9103. [DOI] [PubMed] [Google Scholar]
  • 218.Xiang Y., Simpson D.A., Spiegel J., Zhou A., Silverman R.H., Condit R.C. The vaccinia virus A18R DNA helicase is a postreplicative negative transcription elongation factor. J. Virol. 1998;72:7012–7023. doi: 10.1128/jvi.72.9.7012-7023.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 219.Xue F., Cooley L. kelch encodes a component of intercellular bridges in Drosophila egg chambers. Cell. 1993;72:681–693. doi: 10.1016/0092-8674(93)90397-9. [DOI] [PubMed] [Google Scholar]
  • 220.Yang W.-P., Kao S.-Y., Bauer W.R. Biosynthesis and post-translational cleavage of vaccinia virus structural protein VP8. Virology. 1988;167:585–590. [PubMed] [Google Scholar]
  • 221.Zajac P., Spehner D., Drillien R. The vaccinia virus J5L open reading frame encodes a polypeptide expressed late during infection and required for viral multiplication. Virus Res. 1995;37:163–173. doi: 10.1016/0168-1702(95)00025-l. [DOI] [PubMed] [Google Scholar]
  • 222.Zhang Y., Moss B. Immature viral envelope formation is interrupted same stage by lac operator-mediated repression of the vaccinia virus D13L gene and by the drug rifampicin. Virology. 1992;187:643–653. doi: 10.1016/0042-6822(92)90467-4. [DOI] [PubMed] [Google Scholar]
  • 223.Zhang Y., Ahn B.-Y., Moss B. Targeting of a multicomponent transcription apparatus into assembling vaccinia virus particles requires RAP94, an RNA polymerase-associated protein. J. Virol. 1994;68:1360–1370. doi: 10.1128/jvi.68.3.1360-1370.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 224.Zhang W.-H., Wilcock D., Smith G.L. Vaccinia virus F12L protein is required for actin tail formation, normal plaque size, and virulence. J. Virol. 2000;74:11654–11662. doi: 10.1128/jvi.74.24.11654-11662.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Virology are provided here courtesy of Elsevier

RESOURCES