Skip to main content
Medline Book to support NIHPA logoLink to Medline Book to support NIHPA
. 2022;2533:3–22. doi: 10.1007/978-1-0716-2501-9_1

A Comparative Perspective on Ribosome Biogenesis: Unity and Diversity Across the Tree of Life.

Michael Jüttner, Sébastien Ferreira-Cerca
PMCID: PMC9761495  PMID: 35796979

Abstract

Ribosomes are universally conserved ribonucleoprotein complexes involved in the decoding of the genetic information contained in messenger RNAs into proteins. Accordingly, ribosome biogenesis is a fundamental cellular process required for functional ribosome homeostasis and to preserve satisfactory gene expression capability.Although the ribosome is universally conserved, its biogenesis shows an intriguing degree of variability across the tree of life . These differences also raise yet unresolved questions. Among them are (a) what are, if existing, the remaining ancestral common principles of ribosome biogenesis ; (b) what are the molecular impacts of the evolution history and how did they contribute to (re)shape the ribosome biogenesis pathway across the tree of life ; (c) what is the extent of functional divergence and/or convergence (functional mimicry), and in the latter case (if existing) what is the molecular basis; (d) considering the universal ribosome conservation, what is the capability of functional plasticity and cellular adaptation of the ribosome biogenesis pathway?In this review, we provide a brief overview of ribosome biogenesis across the tree of life and try to illustrate some potential and/or emerging answers to these unresolved questions.


Full text of this article can be found in Bookshelf.

References

  1. Einstein A (1916) Die Grundlage der allgemeinen Relativitätstheorie. Ann Phys 354:769–822. https://doi.org/10.1002/andp.19163540702 doi: 10.1002/andp.19163540702. [DOI]
  2. Friedmann H (2004) From butyribacterium to E. coli: an essay on unity in biochemistry. Perspect Biol Med 47:47–66. https://doi.org/10.1353/pbm.2004.0007 doi: 10.1353/pbm.2004.0007. [DOI] [PubMed]
  3. Huxley J (1942) Evolution, the modern synthesis. G. Allen & Unwin Limited, Crows Nest
  4. Laland KN, Uller T, Feldman MW et al (2015) The extended evolutionary synthesis: its structure, assumptions and predictions. Proc R Soc B Biol Sci 282:20151019. https://doi.org/10.1098/rspb.2015.1019 doi: 10.1098/rspb.2015.1019. [DOI] [PMC free article] [PubMed]
  5. McElroy WD (1976) The unity in biochemistry. Trends Biochem Sci 1:93. https://doi.org/10.1016/0968-0004(76)90009-8 doi: 10.1016/0968-0004(76)90009-8. [DOI]
  6. Pace NR, Sapp J, Goldenfeld N (2012) Phylogeny and beyond: scientific, historical, and conceptual significance of the first tree of life. Proc Natl Acad Sci 109:1011–1018. https://doi.org/10.1073/pnas.1109716109 doi: 10.1073/pnas.1109716109. [DOI] [PMC free article] [PubMed]
  7. Thauer R (1997) Biodiversity and unity in biochemistry. Antonie Van Leeuwenhoek 71:21–32. https://doi.org/10.1023/A:1000149705588 doi: 10.1023/A:1000149705588. [DOI] [PubMed]
  8. Kluyver HJ, Donker HJL (1926) Die Einheit der Biochemie. Chem Zelle Gewebe 13:134–190
  9. Crother B, Parenti L (2017) Assumptions inhibiting progress in comparative biology. CRC Press, Boca Raton
  10. Hage AE, Tollervey D (2004) A surfeit of factors: why is ribosome assembly so much more complicated in eukaryotes than bacteria? RNA Biol 1:9–14. https://doi.org/10.4161/rna.1.1.932 doi: 10.4161/rna.1.1.932. [DOI] [PubMed]
  11. Martinez P (2018) The comparative method in biology and the essentialist trap. Front Ecol Evol 6:130. https://doi.org/10.3389/fevo.2018.00130 doi: 10.3389/fevo.2018.00130. [DOI]
  12. Ramakrishnan V (2009) The ribosome: some hard facts about its structure and hot air about its evolution. Cold Spring Harb Symp Quant Biol 74:25–33. https://doi.org/10.1101/sqb.2009.74.032 doi: 10.1101/sqb.2009.74.032. [DOI] [PubMed]
  13. Lecompte O, Ripp R, Thierry J et al (2002) Comparative analysis of ribosomal proteins in complete genomes: an example of reductive evolution at the domain scale. Nucleic Acids Res 30:5382–5390. https://doi.org/10.1093/nar/gkf693 doi: 10.1093/nar/gkf693. [DOI] [PMC free article] [PubMed]
  14. Yutin N, Puigbò P, Koonin EV, Wolf YI (2012) Phylogenomics of prokaryotic ribosomal proteins. PLoS One 7:e36972. https://doi.org/10.1371/journal.pone.0036972 doi: 10.1371/journal.pone.0036972. [DOI] [PMC free article] [PubMed]
  15. Lake JA, Henderson E, Oakes M, Clark MW (1984) Eocytes: a new ribosome structure indicates a kingdom with a close relationship to eukaryotes. Proc Natl Acad Sci 81:3786–3790 doi: 10.1073/pnas.81.12.3786. [DOI] [PMC free article] [PubMed]
  16. Tissières A, Watson JD (1958) Ribonucleoprotein particles from Escherichia coli. Nature 182:778–780. https://doi.org/10.1038/182778b0 doi: 10.1038/182778b0. [DOI] [PubMed]
  17. Tissières A, Watson JD, Schlessinger D, Hollingworth BR (1959) Ribonucleoprotein particles from Escherichia coli. J Mol Biol 1:221–233. https://doi.org/10.1016/S0022-2836(59)80029-2 doi: 10.1016/S0022-2836(59)80029-2. [DOI]
  18. Ferreira-Cerca S (2017) Life and death of ribosomes in archaea. In: Clouet-d’Orval B (ed) RNA metabolism and gene expression in Archaea. Springer International Publishing, Cham, pp 129–158
  19. Klappenbach JA, Saxman PR, Cole JR, Schmidt TM (2001) Rrndb: the ribosomal RNA operon copy number database. Nucleic Acids Res 29:181–184 doi: 10.1093/nar/29.1.181. [DOI] [PMC free article] [PubMed]
  20. Hadjiolov AA (1985) The nucleolus and ribosome biogenesis. Springer-Verlag, Wien
  21. Stoddard SF, Smith BJ, Hein R et al (2015) rrnDB: improved tools for interpreting rRNA gene abundance in bacteria and archaea and a new foundation for future development. Nucleic Acids Res 43:D593–D598. https://doi.org/10.1093/nar/gku1201 doi: 10.1093/nar/gku1201. [DOI] [PMC free article] [PubMed]
  22. Warner JR (1999) The economics of ribosome biosynthesis in yeast. Trends Biochem Sci 24:437–440. https://doi.org/10.1016/S0968-0004(99)01460-7 doi: 10.1016/S0968-0004(99)01460-7. [DOI] [PubMed]
  23. Gerbi S (1996) Expansion segments: regions of variable size that interrupt the universal core secondary structure of ribosomal RNA. In: Ribosomal RNA structure, evolution, processing, and function in protein biosynthesis, vol 71. CRC Press, Boca Raton, p 87
  24. Gerbi SA (1986) The evolution of eukaryotic ribosomal DNA. Biosystems 19:247–258. https://doi.org/10.1016/0303-2647(86)90001-8 doi: 10.1016/0303-2647(86)90001-8. [DOI] [PubMed]
  25. Armache J-P, Anger AM, Márquez V et al (2013) Promiscuous behaviour of archaeal ribosomal proteins: implications for eukaryotic ribosome evolution. Nucleic Acids Res 41:1284–1293. https://doi.org/10.1093/nar/gks1259 doi: 10.1093/nar/gks1259. [DOI] [PMC free article] [PubMed]
  26. Petrov AS, Gulen B, Norris AM et al (2015) History of the ribosome and the origin of translation. Proc Natl Acad Sci 112:15396–15401. https://doi.org/10.1073/pnas.1509761112 doi: 10.1073/pnas.1509761112. [DOI] [PMC free article] [PubMed]
  27. Parker MS, Sallee FR, Park EA, Parker SL (2015) Homoiterons and expansion in ribosomal RNAs. FEBS Open Bio 5:864–876. https://doi.org/10.1016/j.fob.2015.10.005 doi: 10.1016/j.fob.2015.10.005. [DOI] [PMC free article] [PubMed]
  28. Nakao A, Yoshihama M, Kenmochi N (2004) RPG: the ribosomal protein gene database. Nucleic Acids Res 32:D168–D170. https://doi.org/10.1093/nar/gkh004 doi: 10.1093/nar/gkh004. [DOI] [PMC free article] [PubMed]
  29. Culver GM (2003) Assembly of the 30S ribosomal subunit. Biopolymers 68:234–249. https://doi.org/10.1002/bip.10221 doi: 10.1002/bip.10221. [DOI] [PubMed]
  30. Nierhaus KH, Lafontaine DL (2004) Ribosome assembly. In: Protein synthesis and ribosome structure. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 85–143
  31. Nierhaus KH (1991) The assembly of prokaryotic ribosomes. Biochimie 73:739–755. https://doi.org/10.1016/0300-9084(91)90054-5 doi: 10.1016/0300-9084(91)90054-5. [DOI] [PubMed]
  32. Londei P, Teixidò J, Acca M et al (1986) Total reconstitution of active large ribosomal subunits of the thermoacidophilic archaebacterium Sulfolobus solfataricus. Nucleic Acids Res 14:2269–2285 doi: 10.1093/nar/14.5.2269. [DOI] [PMC free article] [PubMed]
  33. Sanchez EM, Londei P, Amils R (1996) Total reconstitution of active small ribosomal subunits of the extreme halophilic archaeon Haloferax mediterranei. Biochim Biophys Acta Protein Struct Mol Enzymol 1292:140–144. https://doi.org/10.1016/0167-4838(95)00179-4 doi: 10.1016/0167-4838(95)00179-4. [DOI] [PubMed]
  34. Sanchez ME, Urena D, Amils R, Londei P (1990) In vitro reassembly of active large ribosomal subunits of the halophilic archaebacterium Haloferax mediterranei. Biochemistry 29:9256–9261. https://doi.org/10.1021/bi00491a021 doi: 10.1021/bi00491a021. [DOI] [PubMed]
  35. Mangiarotti G, Chiaberge S (1997) Reconstitution of functional eukaryotic ribosomes from Dictyostelium discoideum ribosomal proteins and RNA. J Biol Chem 272:19682–19687. https://doi.org/10.1074/jbc.272.32.19682 doi: 10.1074/jbc.272.32.19682. [DOI] [PubMed]
  36. Sas-Chen A, Thomas JM, Matzov D et al (2020) Dynamic RNA acetylation revealed by quantitative cross-evolutionary mapping. Nature 583:638–643. https://doi.org/10.1038/s41586-020-2418-2 doi: 10.1038/s41586-020-2418-2. [DOI] [PMC free article] [PubMed]
  37. Sloan KE, Warda AS, Sharma S et al (2016) Tuning the ribosome: the influence of rRNA modification on eukaryotic ribosome biogenesis and function. RNA Biol 14(9):1138–1116. https://doi.org/10.1080/15476286.2016.1259781 doi: 10.1080/15476286.2016.1259781. [DOI] [PMC free article] [PubMed]
  38. Dennis PP, Tripp V, Lui L et al (2015) C/D box sRNA-guided 2′-O-methylation patterns of archaeal rRNA molecules. BMC Genomics 16:632. https://doi.org/10.1186/s12864-015-1839-z doi: 10.1186/s12864-015-1839-z. [DOI] [PMC free article] [PubMed]
  39. Grosjean H, Gaspin C, Marck C et al (2008) RNomics and modomics in the halophilic archaea Haloferax volcanii: identification of RNA modification genes. BMC Genomics 9:470. https://doi.org/10.1186/1471-2164-9-470 doi: 10.1186/1471-2164-9-470. [DOI] [PMC free article] [PubMed]
  40. Lafontaine DLJ, Tollervey D (1998) Birth of the snoRNPs: the evolution of the modification-guide snoRNAs. Trends Biochem Sci 23:383–388. https://doi.org/10.1016/S0968-0004(98)01260-2 doi: 10.1016/S0968-0004(98)01260-2. [DOI] [PubMed]
  41. Coureux P-D, Lazennec-Schurdevin C, Bourcier S et al (2020) Cryo-EM study of an archaeal 30S initiation complex gives insights into evolution of translation initiation. Commun Biol 3:58. https://doi.org/10.1038/s42003-020-0780-0 doi: 10.1038/s42003-020-0780-0. [DOI] [PMC free article] [PubMed]
  42. Grünberger F, Knüppel R, Jüttner M, et al (2020) Exploring prokaryotic transcription, operon structures, rRNA maturation and modifications using nanopore-based native RNA sequencing. bioRxiv 2019.12.18.880849. https://doi.org/10.1101/2019.12.18.880849 doi: 10.1101/2019.12.18.880849. [DOI]
  43. Sharma S, Lafontaine DLJ (2015) ‘View from a bridge’: a new perspective on eukaryotic rRNA base modification. Trends Biochem Sci 40:560–575. https://doi.org/10.1016/j.tibs.2015.07.008 doi: 10.1016/j.tibs.2015.07.008. [DOI] [PubMed]
  44. Thomson E, Ferreira-Cerca S, Hurt E (2013) Eukaryotic ribosome biogenesis at a glance. J Cell Sci 126:4815. https://doi.org/10.1242/jcs.111948 doi: 10.1242/jcs.111948. [DOI] [PubMed]
  45. Ebersberger I, Simm S, Leisegang MS et al (2014) The evolution of the ribosome biogenesis pathway from a yeast perspective. Nucleic Acids Res 42:1509–1523. https://doi.org/10.1093/nar/gkt1137 doi: 10.1093/nar/gkt1137. [DOI] [PMC free article] [PubMed]
  46. Henras AK, Plisson-Chastang C, O’Donohue M-F et al (2015) An overview of pre-ribosomal RNA processing in eukaryotes. Wiley Interdiscip Rev RNA 6:225–242. https://doi.org/10.1002/wrna.1269 doi: 10.1002/wrna.1269. [DOI] [PMC free article] [PubMed]
  47. Grosjean H, Breton M, Sirand-Pugnet P et al (2014) Predicting the minimal translation apparatus: lessons from the reductive evolution of mollicutes. PLoS Genet 10:e1004363. https://doi.org/10.1371/journal.pgen.1004363 doi: 10.1371/journal.pgen.1004363. [DOI] [PMC free article] [PubMed]
  48. Woolford JL, Baserga SJ (2013) Ribosome biogenesis in the yeast Saccharomyces cerevisiae. Genetics 195:643–681. https://doi.org/10.1534/genetics.113.153197 doi: 10.1534/genetics.113.153197. [DOI] [PMC free article] [PubMed]
  49. Ban N, Beckmann R, Cate JHD et al (2014) A new system for naming ribosomal proteins. Curr Opin Struct Biol 24:165–169. https://doi.org/10.1016/j.sbi.2014.01.002 doi: 10.1016/j.sbi.2014.01.002. [DOI] [PMC free article] [PubMed]
  50. Nürenberg-Goloub E, Kratzat H, Heinemann H et al (2020) Molecular analysis of the ribosome recycling factor ABCE1 bound to the 30S post-splitting complex. EMBO J 39:e103788. https://doi.org/10.15252/embj.2019103788 doi: 10.15252/embj.2019103788. [DOI] [PMC free article] [PubMed]
  51. Márquez V, Fröhlich T, Armache J-P et al (2011) Proteomic characterization of archaeal ribosomes reveals the presence of novel archaeal-specific ribosomal proteins. J Mol Biol 405:1215–1232. https://doi.org/10.1016/j.jmb.2010.11.055 doi: 10.1016/j.jmb.2010.11.055. [DOI] [PubMed]
  52. Londei P, Ferreira-Cerca S (2021) Ribosome biogenesis in archaea. Front Microbiol 12:1476. https://doi.org/10.3389/fmicb.2021.686977 doi: 10.3389/fmicb.2021.686977. [DOI] [PMC free article] [PubMed]
  53. Mendler K, Chen H, Parks DH et al (2019) AnnoTree: visualization and exploration of a functionally annotated microbial tree of life. Nucleic Acids Res 47:4442–4448. https://doi.org/10.1093/nar/gkz246 doi: 10.1093/nar/gkz246. [DOI] [PMC free article] [PubMed]
  54. Cannone JJ, Subramanian S, Schnare MN et al (2002) The comparative RNA web (CRW) site: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs. BMC Bioinform 3:2–2. https://doi.org/10.1186/1471-2105-3-2 doi: 10.1186/1471-2105-3-2. [DOI] [PMC free article] [PubMed]
  55. Nikolaeva DD, Gelfand MS, Garushyants SK (2020) Simplification of ribosomes in bacteria with tiny genomes. bioRxiv 755876. https://doi.org/10.1101/755876 doi: 10.1101/755876. [DOI] [PMC free article] [PubMed]
  56. Quast C, Pruesse E, Yilmaz P et al (2012) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–D596. https://doi.org/10.1093/nar/gks1219 doi: 10.1093/nar/gks1219. [DOI] [PMC free article] [PubMed]
  57. Chao FC (1957) Dissociation of macromolecular ribonucleoprotein of yeast. Arch Biochem Biophys 70:426–431. https://doi.org/10.1016/0003-9861(57)90130-3 doi: 10.1016/0003-9861(57)90130-3. [DOI] [PubMed]
  58. Chao F-C, Schachman HK (1956) The isolation and characterization of a macromolecular ribonucleoprotein from yeast. Arch Biochem Biophys 61:220–230. https://doi.org/10.1016/0003-9861(56)90334-4 doi: 10.1016/0003-9861(56)90334-4. [DOI] [PubMed]
  59. Baßler J, Hurt E (2019) Eukaryotic ribosome assembly. Annu Rev Biochem 88:281–306. https://doi.org/10.1146/annurev-biochem-013118-110817 doi: 10.1146/annurev-biochem-013118-110817. [DOI] [PubMed]
  60. Klinge S, Woolford JL (2019) Ribosome assembly coming into focus. Nat Rev Mol Cell Biol 20:116–131. https://doi.org/10.1038/s41580-018-0078-y doi: 10.1038/s41580-018-0078-y. [DOI] [PMC free article] [PubMed]
  61. Melnikov S, Ben-Shem A, Garreau de Loubresse N et al (2012) One core, two shells: bacterial and eukaryotic ribosomes. Nat Struct Mol Biol 19:560–567. https://doi.org/10.1038/nsmb.2313 doi: 10.1038/nsmb.2313. [DOI] [PubMed]
  62. Barandun J, Hunziker M, Vossbrinck CR, Klinge S (2019) Evolutionary compaction and adaptation visualized by the structure of the dormant microsporidian ribosome. Nat Microbiol 4:1798–1804. https://doi.org/10.1038/s41564-019-0514-6 doi: 10.1038/s41564-019-0514-6. [DOI] [PMC free article] [PubMed]
  63. Penev PI, Fakhretaha-Aval S, Patel VJ et al (2020) Supersized ribosomal RNA expansion segments in Asgard archaea. Genome Biol Evol 12:1694–1710. https://doi.org/10.1093/gbe/evaa170 doi: 10.1093/gbe/evaa170. [DOI] [PMC free article] [PubMed]
  64. Tirumalai MR, Kaelber JT, Park DR et al (2020) Cryo-electron microscopy visualization of a large insertion in the 5S ribosomal RNA of the extremely halophilic archaeon Halococcus morrhuae. FEBS Open Bio 10:1938–1946. https://doi.org/10.1002/2211-5463.12962 doi: 10.1002/2211-5463.12962. [DOI] [PMC free article] [PubMed]
  65. Stepanov VG, Fox GE (2021) Expansion segments in bacterial and archaeal 5S ribosomal RNAs. RNA 27:133–150. https://doi.org/10.1261/rna.077123.120 doi: 10.1261/rna.077123.120. [DOI] [PMC free article] [PubMed]
  66. Bowman JC, Petrov AS, Frenkel-Pinter M et al (2020) Root of the tree: the significance, evolution, and origins of the ribosome. Chem Rev 120:4848–4878. https://doi.org/10.1021/acs.chemrev.9b00742 doi: 10.1021/acs.chemrev.9b00742. [DOI] [PubMed]
  67. Lake JA (1985) Evolving ribosome structure: domains in Archaebacteria, eubacteria, eocytes and eukaryotes. Annu Rev Biochem 54:507–530. https://doi.org/10.1146/annurev.bi.54.070185.002451 doi: 10.1146/annurev.bi.54.070185.002451. [DOI] [PubMed]
  68. Lake JA (2015) Eukaryotic origins. Philos Trans R Soc Lond Ser B Biol Sci 370:20140329. https://doi.org/10.1098/rstb.2014.0321 doi: 10.1098/rstb.2014.0321. [DOI] [PMC free article] [PubMed]
  69. Spang A, Saw JH, Jorgensen SL et al (2015) Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature 521:173–179 doi: 10.1038/nature14447. [DOI] [PMC free article] [PubMed]
  70. Williams TA, Foster PG, Nye TMW et al (2012) A congruent phylogenomic signal places eukaryotes within the archaea. Proc Biol Sci 279:4870. https://doi.org/10.1098/rspb.2012.1795 doi: 10.1098/rspb.2012.1795. [DOI] [PMC free article] [PubMed]
  71. Zaremba-Niedzwiedzka K, Caceres EF, Saw JH et al (2017) Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature 541(7637):353–358 doi: 10.1038/nature21031. [DOI] [PubMed]
  72. Dao Duc K, Batra SS, Bhattacharya N et al (2019) Differences in the path to exit the ribosome across the three domains of life. Nucleic Acids Res 47:4198–4210. https://doi.org/10.1093/nar/gkz106 doi: 10.1093/nar/gkz106. [DOI] [PMC free article] [PubMed]
  73. Melnikov S, Manakongtreecheep K, Söll D (2018) Revising the structural diversity of ribosomal proteins across the three domains of life. Mol Biol Evol 35:1588–1598. https://doi.org/10.1093/molbev/msy021 doi: 10.1093/molbev/msy021. [DOI] [PMC free article] [PubMed]
  74. Dohme F, Nierhaus KH (1976) Total reconstitution and assembly of 50S subunits from Escherichia coli ribosomes in vitro. J Mol Biol 107:585–599. https://doi.org/10.1016/S0022-2836(76)80085-X doi: 10.1016/S0022-2836(76)80085-X. [DOI] [PubMed]
  75. Mizushima S, Nomura M (1970) Assembly mapping of 30S ribosomal proteins from E. coli. Nature 226:1214–1218. https://doi.org/10.1038/2261214a0 doi: 10.1038/2261214a0. [DOI] [PubMed]
  76. Nomura M, Erdmann VA (1970) Reconstitution of 50S ribosomal subunits from dissociated molecular components. Nature 228:744–748. https://doi.org/10.1038/228744a0 doi: 10.1038/228744a0. [DOI] [PubMed]
  77. Traub P, Nomura M (1968) Structure and function of E. coli ribosomes. V. Reconstitution of functionally active 30S ribosomal particles from RNA and proteins. Proc Natl Acad Sci U S A 59:777–784. https://doi.org/10.1073/pnas.59.3.777 doi: 10.1073/pnas.59.3.777. [DOI] [PMC free article] [PubMed]
  78. Davis JH, Williamson JR (2017) Structure and dynamics of bacterial ribosome biogenesis. Philos Trans R Soc Lond Ser B Biol Sci 372(1716):20160181. https://doi.org/10.1098/rstb.2016.0181 doi: 10.1098/rstb.2016.0181. [DOI] [PMC free article] [PubMed]
  79. Shajani Z, Sykes MT, Williamson JR (2011) Assembly of bacterial ribosomes. Annu Rev Biochem 80:501–526. https://doi.org/10.1146/annurev-biochem-062608-160432 doi: 10.1146/annurev-biochem-062608-160432. [DOI] [PubMed]
  80. de la Cruz J, Karbstein K, Woolford JL (2015) Functions of ribosomal proteins in assembly of eukaryotic ribosomes in vivo. Annu Rev Biochem 84:93–129. https://doi.org/10.1146/annurev-biochem-060614-033917 doi: 10.1146/annurev-biochem-060614-033917. [DOI] [PMC free article] [PubMed]
  81. Duss O, Stepanyuk GA, Puglisi JD, Williamson JR (2019) Transient protein-RNA interactions guide nascent ribosomal RNA folding. Cell 179:1357–1369.e16. https://doi.org/10.1016/j.cell.2019.10.035 doi: 10.1016/j.cell.2019.10.035. [DOI] [PMC free article] [PubMed]
  82. Ferreira-Cerca S, Pöll G, Kühn H et al (2007) Analysis of the in vivo assembly pathway of eukaryotic 40S ribosomal proteins. Mol Cell 28:446–457. https://doi.org/10.1016/j.molcel.2007.09.029 doi: 10.1016/j.molcel.2007.09.029. [DOI] [PubMed]
  83. Gamalinda M, Ohmayer U, Jakovljevic J et al (2014) A hierarchical model for assembly of eukaryotic 60S ribosomal subunit domains. Genes Dev 28:198–210. https://doi.org/10.1101/gad.228825.113 doi: 10.1101/gad.228825.113. [DOI] [PMC free article] [PubMed]
  84. Ohmayer U, Gamalinda M, Sauert M et al (2013) Studies on the assembly characteristics of large subunit ribosomal proteins in S. cerevisae. PLoS One 8:e68412. https://doi.org/10.1371/journal.pone.0068412 doi: 10.1371/journal.pone.0068412. [DOI] [PMC free article] [PubMed]
  85. Ohmayer U, Gil-Hernández Á, Sauert M et al (2015) Studies on the coordination of ribosomal protein assembly events involved in processing and stabilization of yeast early large ribosomal subunit precursors. PLoS One 10:e0143768. https://doi.org/10.1371/journal.pone.0143768 doi: 10.1371/journal.pone.0143768. [DOI] [PMC free article] [PubMed]
  86. Pöll G, Braun T, Jakovljevic J et al (2009) rRNA maturation in yeast cells depleted of large ribosomal subunit proteins. PLoS One 4:e8249. https://doi.org/10.1371/journal.pone.0008249 doi: 10.1371/journal.pone.0008249. [DOI] [PMC free article] [PubMed]
  87. Rodgers ML, Woodson SA (2019) Transcription increases the cooperativity of ribonucleoprotein assembly. Cell 179:1370–1381.e12. https://doi.org/10.1016/j.cell.2019.11.007 doi: 10.1016/j.cell.2019.11.007. [DOI] [PMC free article] [PubMed]
  88. Fox GE (2010) Origin and evolution of the ribosome. Cold Spring Harb Perspect Biol 2:a003483. https://doi.org/10.1101/cshperspect.a003483 doi: 10.1101/cshperspect.a003483. [DOI] [PMC free article] [PubMed]
  89. Connolly K, Rife JP, Culver G (2008) Mechanistic insight into the ribosome biogenesis functions of the ancient protein KsgA. Mol Microbiol 70:1062–1075. https://doi.org/10.1111/j.1365-2958.2008.06485.x doi: 10.1111/j.1365-2958.2008.06485.x. [DOI] [PMC free article] [PubMed]
  90. Seistrup KH, Rose S, Birkedal U et al (2016) Bypassing rRNA methylation by RsmA/Dim1during ribosome maturation in the hyperthermophilic archaeon Nanoarchaeum equitans. Nucleic Acids Res 45(4):2007–2015. https://doi.org/10.1093/nar/gkw839 doi: 10.1093/nar/gkw839. [DOI] [PMC free article] [PubMed]
  91. Hellmich UA, Weis BL, Lioutikov A et al (2013) Essential ribosome assembly factor Fap7 regulates a hierarchy of RNA–protein interactions during small ribosomal subunit biogenesis. Proc Natl Acad Sci U S A 110:15253–15258. https://doi.org/10.1073/pnas.1306389110 doi: 10.1073/pnas.1306389110. [DOI] [PMC free article] [PubMed]
  92. Knüppel R, Christensen RH, Gray FC et al (2018) Insights into the evolutionary conserved regulation of Rio ATPase activity. Nucleic Acids Res 46:1441–1456. https://doi.org/10.1093/nar/gkx1236 doi: 10.1093/nar/gkx1236. [DOI] [PMC free article] [PubMed]
  93. Veith T, Martin R, Wurm JP et al (2012) Structural and functional analysis of the archaeal endonuclease Nob1. Nucleic Acids Res 40:3259–3274. https://doi.org/10.1093/nar/gkr1186 doi: 10.1093/nar/gkr1186. [DOI] [PMC free article] [PubMed]
  94. Clouet-d’Orval B, Batista M, Bouvier M et al (2018) Insights into RNA-processing pathways and associated RNA-degrading enzymes in Archaea. FEMS Microbiol Rev 42:579–613. https://doi.org/10.1093/femsre/fuy016 doi: 10.1093/femsre/fuy016. [DOI] [PubMed]
  95. Knüppel R, Trahan C, Kern M et al (2021) Insights into synthesis and function of KsgA/Dim1-dependent rRNA modifications in archaea. Nucleic Acids Res 49(3):1662–1687. https://doi.org/10.1093/nar/gkaa1268 doi: 10.1093/nar/gkaa1268. [DOI] [PMC free article] [PubMed]
  96. Ameismeier M, Cheng J, Berninghausen O, Beckmann R (2018) Visualizing late states of human 40S ribosomal subunit maturation. Nature 558:249–253. https://doi.org/10.1038/s41586-018-0193-0 doi: 10.1038/s41586-018-0193-0. [DOI] [PubMed]
  97. Bubunenko M, Korepanov A, Court DL et al (2006) 30S ribosomal subunits can be assembled in vivo without primary binding ribosomal protein S15. RNA 12:1229–1239. https://doi.org/10.1261/rna.2262106 doi: 10.1261/rna.2262106. [DOI] [PMC free article] [PubMed]
  98. Mulder AM, Yoshioka C, Beck AH et al (2010) Visualizing ribosome biogenesis: parallel assembly pathways for the 30S subunit. Science 330:673. https://doi.org/10.1126/science.1193220 doi: 10.1126/science.1193220. [DOI] [PMC free article] [PubMed]
  99. Pratte D, Singh U, Murat G, Kressler D (2013) Mak5 and Ebp2 act together on early pre-60S particles and their reduced functionality bypasses the requirement for the essential pre-60S factor Nsa1. PLoS One 8:–e82741. https://doi.org/10.1371/journal.pone.0082741 doi: 10.1371/journal.pone.0082741. [DOI] [PMC free article] [PubMed]
  100. Zorbas C, Nicolas E, Wacheul L et al (2015) The human 18S rRNA base methyltransferases DIMT1L and WBSCR22-TRMT112 but not rRNA modification are required for ribosome biogenesis. Mol Biol Cell 26:2080–2095. https://doi.org/10.1091/mbc.E15-02-0073 doi: 10.1091/mbc.E15-02-0073. [DOI] [PMC free article] [PubMed]
  101. Talkington MWT, Siuzdak G, Williamson JR (2005) An assembly landscape for the 30S ribosomal subunit. Nature 438:628–632. https://doi.org/10.1038/nature04261 doi: 10.1038/nature04261. [DOI] [PMC free article] [PubMed]
  102. Sharma MR, Barat C, Wilson DN et al (2005) Interaction of era with the 30S ribosomal subunit: implications for 30S subunit assembly. Mol Cell 18:319–329. https://doi.org/10.1016/j.molcel.2005.03.028 doi: 10.1016/j.molcel.2005.03.028. [DOI] [PubMed]
  103. Tu C, Zhou X, Tropea JE et al (2009) Structure of ERA in complex with the 3′ end of 16S rRNA: implications for ribosome biogenesis. Proc Natl Acad Sci U S A 106:14843–14848. https://doi.org/10.1073/pnas.0904032106 doi: 10.1073/pnas.0904032106. [DOI] [PMC free article] [PubMed]
  104. Tu C, Zhou X, Tarasov SG et al (2011) The era GTPase recognizes the GAUCACCUCC sequence and binds helix 45 near the 3′ end of 16S rRNA. Proc Natl Acad Sci U S A 108:10156–10161. https://doi.org/10.1073/pnas.1017679108 doi: 10.1073/pnas.1017679108. [DOI] [PMC free article] [PubMed]
  105. Vercruysse M, Köhrer C, Shen Y et al (2016) Identification of YbeY-protein interactions involved in 16S rRNA maturation and stress regulation in Escherichia coli. mBio 7:e01785-16. https://doi.org/10.1128/mBio.01785-16 doi: 10.1128/mBio.01785-16. [DOI] [PMC free article] [PubMed]
  106. Jakovljevic J, de Mayolo PA, Miles TD et al (2004) The carboxy-terminal extension of yeast ribosomal protein S14 is necessary for maturation of 43S preribosomes. Mol Cell 14:331–342. https://doi.org/10.1016/S1097-2765(04)00215-1 doi: 10.1016/S1097-2765(04)00215-1. [DOI] [PubMed]
  107. Lamanna AC, Karbstein K (2009) Nob1 binds the single-stranded cleavage site D at the 3′-end of 18S rRNA with its PIN domain. Proc Natl Acad Sci U S A 106:14259–14264. https://doi.org/10.1073/pnas.0905403106 doi: 10.1073/pnas.0905403106. [DOI] [PMC free article] [PubMed]
  108. Lebaron S, Schneider C, van Nues RW et al (2012) Proof reading of pre-40S ribosome maturation by a translation initiation factor and 60S subunits. Nat Struct Mol Biol 19:744–753. https://doi.org/10.1038/nsmb.2308 doi: 10.1038/nsmb.2308. [DOI] [PMC free article] [PubMed]
  109. Pertschy B, Schneider C, Gnädig M et al (2009) RNA helicase Prp43 and its co-factor Pfa1 promote 20 to 18S rRNA processing catalyzed by the endonuclease Nob1. J Biol Chem 284:35079–35091. https://doi.org/10.1074/jbc.M109.040774 doi: 10.1074/jbc.M109.040774. [DOI] [PMC free article] [PubMed]
  110. Woolls HA, Lamanna AC, Karbstein K (2011) Roles of Dim2 in ribosome assembly. J Biol Chem 286:2578–2586. https://doi.org/10.1074/jbc.M110.191494 doi: 10.1074/jbc.M110.191494. [DOI] [PMC free article] [PubMed]
  111. Jia MZ, Horita S, Nagata K, Tanokura M (2010) An archaeal Dim2-like protein, aDim2p, forms a ternary complex with a/eIF2α and the 3′ end fragment of 16S rRNA. J Mol Biol 398:774–785. https://doi.org/10.1016/j.jmb.2010.03.055 doi: 10.1016/j.jmb.2010.03.055. [DOI] [PubMed]
  112. Jüttner M, Weiß M, Ostheimer N et al (2019) A versatile cis-acting element reporter system to study the function, maturation and stability of ribosomal RNA mutants in archaea. Nucleic Acids Res 48(4):2073–2090. https://doi.org/10.1093/nar/gkz1156 doi: 10.1093/nar/gkz1156. [DOI] [PMC free article] [PubMed]
  113. Veldman GM, Klootwijk J, van Heerikhuizen H, Planta RJ (1981) The nucleotide sequence of the intergenic region between the 5.8S and 26S rRNA genes of the yeast ribosomal RNA operon. Possible implications for the interaction between 5.8S and 26S rRNA and the processing of the primary transcript. Nucleic Acids Res 9:4847–4862. https://doi.org/10.1093/nar/9.19.4847 doi: 10.1093/nar/9.19.4847. [DOI] [PMC free article] [PubMed]
  114. Bechhofer DH, Deutscher MP (2019) Bacterial ribonucleases and their roles in RNA metabolism. Crit Rev Biochem Mol Biol 54:242–300. https://doi.org/10.1080/10409238.2019.1651816 doi: 10.1080/10409238.2019.1651816. [DOI] [PMC free article] [PubMed]
  115. Bubunenko M, Court DL, Refaii AA et al (2013) Nus transcription elongation factors and RNase III modulate small ribosome subunit biogenesis in E. coli. Mol Microbiol 87:382–393. https://doi.org/10.1111/mmi.12105 doi: 10.1111/mmi.12105. [DOI] [PMC free article] [PubMed]
  116. Condon C (2007) Maturation and degradation of RNA in bacteria. Curr Opin Microbiol 10:271–278. https://doi.org/10.1016/j.mib.2007.05.008 doi: 10.1016/j.mib.2007.05.008. [DOI] [PubMed]
  117. Deutscher MP (2009) Chapter 9: Maturation and degradation of ribosomal RNA in bacteria. In: Progress in molecular biology and translational science. Academic Press, Cambridge, pp 369–391 doi: 10.1016/S0079-6603(08)00809-X. [DOI] [PubMed]
  118. Gegenheimer P, Apirion D (1975) Escherichia coli ribosomal ribonucleic acids are not cut from an intact precursor molecule. J Biol Chem 250:2407–2409 [PubMed]
  119. Gegenheimer P, Watson N, Apirion D (1977) Multiple pathways for primary processing of ribosomal RNA in Escherichia coli. J Biol Chem 252:3064–3073 [PubMed]
  120. Srivastava AK, Schlessinger D (1990) Mechanism and regulation of bacterial ribosomal RNA processing. Annu Rev Microbiol 44:105–129. https://doi.org/10.1146/annurev.mi.44.100190.000541 doi: 10.1146/annurev.mi.44.100190.000541. [DOI] [PubMed]
  121. Young RA, Steitz JA (1978) Complementary sequences 1700 nucleotides apart form a ribonuclease III cleavage site in Escherichia coli ribosomal precursor RNA. Proc Natl Acad Sci U S A 75:3593–3597 doi: 10.1073/pnas.75.8.3593. [DOI] [PMC free article] [PubMed]
  122. Danan M, Schwartz S, Edelheit S, Sorek R (2012) Transcriptome-wide discovery of circular RNAs in archaea. Nucleic Acids Res 40:3131–3142. https://doi.org/10.1093/nar/gkr1009 doi: 10.1093/nar/gkr1009. [DOI] [PMC free article] [PubMed]
  123. Tang TH, Rozhdestvensky TS, d’Orval BC et al (2002) RNomics in Archaea reveals a further link between splicing of archaeal introns and rRNA processing. Nucleic Acids Res 30:921–930 doi: 10.1093/nar/30.4.921. [DOI] [PMC free article] [PubMed]
  124. Kater L, Thoms M, Barrio-Garcia C et al (2017) Visualizing the assembly pathway of nucleolar pre-60S ribosomes. Cell 171:1599–1610.e14. https://doi.org/10.1016/j.cell.2017.11.039 doi: 10.1016/j.cell.2017.11.039. [DOI] [PMC free article] [PubMed]
  125. Joret C, Capeyrou R, Belhabich-Baumas K et al (2018) The Npa1p complex chaperones the assembly of the earliest eukaryotic large ribosomal subunit precursor. PLoS Genet 14:e1007597. https://doi.org/10.1371/journal.pgen.1007597 doi: 10.1371/journal.pgen.1007597. [DOI] [PMC free article] [PubMed]
  126. Redko Y, Condon C (2009) Ribosomal protein L3 bound to 23S precursor rRNA stimulates its maturation by Mini-III ribonuclease. Mol Microbiol 71:1145–1154. https://doi.org/10.1111/j.1365-2958.2008.06591.x doi: 10.1111/j.1365-2958.2008.06591.x. [DOI] [PubMed]
  127. Nowotny V, Nierhaus KH (1982) Initiator proteins for the assembly of the 50S subunit from Escherichia coli ribosomes. Proc Natl Acad Sci U S A 79:7238–7242. https://doi.org/10.1073/pnas.79.23.7238 doi: 10.1073/pnas.79.23.7238. [DOI] [PMC free article] [PubMed]
  128. Spillmann S, Dohme F, Nierhaus KH (1977) Assembly in vitro of the 50S subunit from Escherichia coli ribosomes: proteins essential for the first heat-dependent conformational change. J Mol Biol 115:513–523. https://doi.org/10.1016/0022-2836(77)90168-1 doi: 10.1016/0022-2836(77)90168-1. [DOI] [PubMed]
  129. Chaker-Margot M, Barandun J, Hunziker M, Klinge S (2017) Architecture of the yeast small subunit processome. Science 355:eaal1880. https://doi.org/10.1126/science.aal1880 doi: 10.1126/science.aal1880. [DOI] [PubMed]
  130. Kornprobst M, Turk M, Kellner N et al (2016) Architecture of the 90S pre-ribosome: a structural view on the birth of the eukaryotic ribosome. Cell 166:380–393. https://doi.org/10.1016/j.cell.2016.06.014 doi: 10.1016/j.cell.2016.06.014. [DOI] [PubMed]
  131. Sun Q, Zhu X, Qi J et al (2017) Molecular architecture of the 90S small subunit pre-ribosome. eLife 6:e22086. https://doi.org/10.7554/eLife.22086 doi: 10.7554/eLife.22086. [DOI] [PMC free article] [PubMed]
  132. Gutell RR, Larsen N, Woese CR (1994) Lessons from an evolving rRNA: 16S and 23S rRNA structures from a comparative perspective. Microbiol Rev 58:10–26 doi: 10.1128/mr.58.1.10-26.1994. [DOI] [PMC free article] [PubMed]
  133. Powers T, Noller HF (1991) A functional pseudoknot in 16S ribosomal RNA. EMBO J 10:2203–2214 doi: 10.1002/j.1460-2075.1991.tb07756.x. [DOI] [PMC free article] [PubMed]
  134. Hughes JM (1996) Functional base-pairing interaction between highly conserved elements of U3 small nucleolar RNA and the small ribosomal subunit RNA. J Mol Biol 259:645–654. https://doi.org/10.1006/jmbi.1996.0346 doi: 10.1006/jmbi.1996.0346. [DOI] [PubMed]
  135. Lackmann F, Belikov S, Burlacu E et al (2018) Maturation of the 90S pre-ribosome requires Mrd1 dependent U3 snoRNA and 35S pre-rRNA structural rearrangements. Nucleic Acids Res 46:3692–3706. https://doi.org/10.1093/nar/gky036 doi: 10.1093/nar/gky036. [DOI] [PMC free article] [PubMed]
  136. Dennis PP, Russell AG, Moniz De Sá M (1997) Formation of the 5′ end pseudoknot in small subunit ribosomal RNA: involvement of U3-like sequences. RNA 3:337–343 [PMC free article] [PubMed]
  137. Lundkvist P, Jupiter S, Segerstolpe A et al (2009) Mrd1p is required for release of base-paired U3 snoRNA within the preribosomal complex. Mol Cell Biol 29:5763–5774. https://doi.org/10.1128/MCB.00428-09 doi: 10.1128/MCB.00428-09. [DOI] [PMC free article] [PubMed]
  138. Sashital DG, Greeman CA, Lyumkis D et al (2014) A combined quantitative mass spectrometry and electron microscopy analysis of ribosomal 30S subunit assembly in E. coli. eLife 3:e04491. https://doi.org/10.7554/eLife.04491 doi: 10.7554/eLife.04491. [DOI] [PMC free article] [PubMed]
  139. Besançon W, Wagner R (1999) Characterization of transient RNA-RNA interactions important for the facilitated structure formation of bacterial ribosomal 16S RNA. Nucleic Acids Res 27:4353–4362. https://doi.org/10.1093/nar/27.22.4353 doi: 10.1093/nar/27.22.4353. [DOI] [PMC free article] [PubMed]
  140. Pardon B, Wagner R (1995) The Escherichia coli ribosomal RNA leader nut region interacts specifically with mature 16S RNA. Nucleic Acids Res 23:932–941. https://doi.org/10.1093/nar/23.6.932 doi: 10.1093/nar/23.6.932. [DOI] [PMC free article] [PubMed]
  141. Theissen G, Behrens SE, Wagner R (1990) Functional importance of the Escherichia coli ribosomal RNA leader box A sequence for post-transcriptional events. Mol Microbiol 4:1667–1678. https://doi.org/10.1111/j.1365-2958.1990.tb00544.x doi: 10.1111/j.1365-2958.1990.tb00544.x. [DOI] [PubMed]
  142. Venema J, Tollervey D (1995) Processing of pre-ribosomal RNA in Saccharomyces cerevisiae. Yeast 11:1629–1650. https://doi.org/10.1002/yea.320111607 doi: 10.1002/yea.320111607. [DOI] [PubMed]
  143. Brewer TE, Albertsen M, Edwards A et al (2020) Unlinked rRNA genes are widespread among bacteria and archaea. ISME J 14:597–608. https://doi.org/10.1038/s41396-019-0552-3 doi: 10.1038/s41396-019-0552-3. [DOI] [PMC free article] [PubMed]
  144. Liang W-Q, Fournier MJ (1997) Synthesis of functional eukaryotic ribosomal RNAs in trans: development of a novel in vivo rDNA system for dissecting ribosome biogenesis. Proc Natl Acad Sci U S A 94:2864–2868 doi: 10.1073/pnas.94.7.2864. [DOI] [PMC free article] [PubMed]
  145. Neueder A, Jakob S, Pöll G et al (2010) A local role for the small ribosomal subunit primary binder rpS5 in final 18S rRNA processing in yeast. PLoS One 5:e10194. https://doi.org/10.1371/journal.pone.0010194 doi: 10.1371/journal.pone.0010194. [DOI] [PMC free article] [PubMed]
  146. Littlefield JW, Dunn DB (1958) Natural occurrence of thymine and three methylated adenine bases in several ribonucleic acids. Nature 181:254–255. https://doi.org/10.1038/181254a0 doi: 10.1038/181254a0. [DOI] [PubMed]
  147. Littlefield JW, Dunn DB (1958) The occurrence and distribution of thymine and three methylated-adenine bases in ribonucleic acids from several sources. Biochem J 70:642–651 doi: 10.1042/bj0700642. [DOI] [PMC free article] [PubMed]
  148. Omer AD, Ziesche S, Decatur WA et al (2003) RNA-modifying machines in archaea. Mol Microbiol 48:617–629. https://doi.org/10.1046/j.1365-2958.2003.03483.x doi: 10.1046/j.1365-2958.2003.03483.x. [DOI] [PubMed]
  149. Breuer R, Gomes-Filho J-V, Randau L (2021) Conservation of archaeal C/D box sRNA-guided RNA modifications. Front Microbiol 12:496. https://doi.org/10.3389/fmicb.2021.654029 doi: 10.3389/fmicb.2021.654029. [DOI] [PMC free article] [PubMed]
  150. Czekay DP, Kothe U (2021) H/ACA small ribonucleoproteins: structural and functional comparison between archaea and eukaryotes. Front Microbiol 12:488. https://doi.org/10.3389/fmicb.2021.654370 doi: 10.3389/fmicb.2021.654370. [DOI] [PMC free article] [PubMed]
  151. Piekna-Przybylska D, Decatur WA, Fournier MJ (2008) The 3D rRNA modification maps database: with interactive tools for ribosome analysis. Nucleic Acids Res 36:D178–D183. https://doi.org/10.1093/nar/gkm855 doi: 10.1093/nar/gkm855. [DOI] [PMC free article] [PubMed]
  152. Hebras J, Krogh N, Marty V et al (2019) Developmental changes of rRNA ribose methylations in the mouse. RNA Biol 17(1):150–164. https://doi.org/10.1080/15476286.2019.1670598 doi: 10.1080/15476286.2019.1670598. [DOI] [PMC free article] [PubMed]
  153. Krogh N, Jansson MD, Häfner SJ et al (2016) Profiling of 2’-O-Me in human rRNA reveals a subset of fractionally modified positions and provides evidence for ribosome heterogeneity. Nucleic Acids Res 44:7884–7895. https://doi.org/10.1093/nar/gkw482 doi: 10.1093/nar/gkw482. [DOI] [PMC free article] [PubMed]
  154. Decatur WA, Fournier MJ (2002) rRNA modifications and ribosome function. Trends Biochem Sci 27:344–351. https://doi.org/10.1016/S0968-0004(02)02109-6 doi: 10.1016/S0968-0004(02)02109-6. [DOI] [PubMed]
  155. Greber BJ, Ban N (2016) Structure and function of the mitochondrial ribosome. Annu Rev Biochem 85:103–132. https://doi.org/10.1146/annurev-biochem-060815-014343 doi: 10.1146/annurev-biochem-060815-014343. [DOI] [PubMed]
  156. Sulima OS, Dinman DJ (2019) The expanding riboverse. Cell 8(10):1205. https://doi.org/10.3390/cells8101205 doi: 10.3390/cells8101205. [DOI] [PMC free article] [PubMed]
  157. Tomal A, Kwasniak-Owczarek M, Janska H (2019) An update on mitochondrial ribosome biology: the plant mitoribosome in the spotlight. Cells 8(12):1562. https://doi.org/10.3390/cells8121562 doi: 10.3390/cells8121562. [DOI] [PMC free article] [PubMed]
  158. Bogenhagen DF, Ostermeyer-Fay AG, Haley JD, Garcia-Diaz M (2018) Kinetics and mechanism of mammalian mitochondrial ribosome assembly. Cell Rep 22:1935–1944. https://doi.org/10.1016/j.celrep.2018.01.066 doi: 10.1016/j.celrep.2018.01.066. [DOI] [PMC free article] [PubMed]
  159. De Silva D, Tu Y-T, Amunts A et al (2015) Mitochondrial ribosome assembly in health and disease. Cell Cycle 14:2226–2250. https://doi.org/10.1080/15384101.2015.1053672 doi: 10.1080/15384101.2015.1053672. [DOI] [PMC free article] [PubMed]
  160. Karbstein K (2019) Mitochondria teach ribosome assembly. Science 365:1077–1078. https://doi.org/10.1126/science.aay7771 doi: 10.1126/science.aay7771. [DOI] [PMC free article] [PubMed]
  161. Saurer M, Ramrath DJF, Niemann M et al (2019) Mitoribosomal small subunit biogenesis in trypanosomes involves an extensive assembly machinery. Science 365:1144–1149. https://doi.org/10.1126/science.aaw5570 doi: 10.1126/science.aaw5570. [DOI] [PubMed]
  162. Zeng R, Smith E, Barrientos A (2018) Yeast mitoribosome large subunit assembly proceeds by hierarchical incorporation of protein clusters and modules on the inner membrane. Cell Metab 27:645–656.e7. https://doi.org/10.1016/j.cmet.2018.01.012 doi: 10.1016/j.cmet.2018.01.012. [DOI] [PMC free article] [PubMed]
  163. Ramrath DJF, Niemann M, Leibundgut M et al (2018) Evolutionary shift toward protein-based architecture in trypanosomal mitochondrial ribosomes. Science 362:eaau7735. https://doi.org/10.1126/science.aau7735 doi: 10.1126/science.aau7735. [DOI] [PubMed]
  164. Jaskolowski M, Ramrath DJF, Bieri P et al (2020) Structural insights into the mechanism of mitoribosomal large subunit biogenesis. Mol Cell 79:629–644.e4. https://doi.org/10.1016/j.molcel.2020.06.030 doi: 10.1016/j.molcel.2020.06.030. [DOI] [PubMed]
  165. Maiti P, Lavdovskaia E, Barrientos A, Richter-Dennerlein R (2021) Role of GTPases in driving mitoribosome assembly. Trends Cell Biol 31:284–297. https://doi.org/10.1016/j.tcb.2020.12.008 doi: 10.1016/j.tcb.2020.12.008. [DOI] [PMC free article] [PubMed]
  166. Soufari H, Waltz F, Parrot C et al (2020) Structure of the mature kinetoplastids mitoribosome and insights into its large subunit biogenesis. Proc Natl Acad Sci U S A 117:29851–29861. https://doi.org/10.1073/pnas.2011301117 doi: 10.1073/pnas.2011301117. [DOI] [PMC free article] [PubMed]
  167. Castelle CJ, Banfield JF (2018) Major new microbial groups expand diversity and alter our understanding of the tree of life. Cell 172:1181–1197. https://doi.org/10.1016/j.cell.2018.02.016 doi: 10.1016/j.cell.2018.02.016. [DOI] [PubMed]
  168. Liu Z, Gutierrez-Vargas C, Wei J et al (2016) Structure and assembly model for the Trypanosoma cruzi 60S ribosomal subunit. Proc Natl Acad Sci U S A 113:12174–12179. https://doi.org/10.1073/pnas.1614594113 doi: 10.1073/pnas.1614594113. [DOI] [PMC free article] [PubMed]
  169. Jüttner M, Ferreira-Cerca S (2022) Looking through the Lens of the Ribosome Biogenesis Evolutionary History: Possible Implications for Archaeal Phylogeny and Eukaryogenesis. Mol Biol Evol 39:msac054. https://doi.org/10.1093/molbev/msac054 doi: 10.1093/molbev/msac054. [DOI] [PMC free article] [PubMed]

RESOURCES