Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2023 Jan 14:1–7. Online ahead of print. doi: 10.1007/s12257-022-0279-2

The Use of Cell-free Protein Synthesis to Push the Boundaries of Synthetic Biology

Kyu Jae Kim 1, So-Jeong Lee 1, Dong-Myung Kim 1,
PMCID: PMC9840425  PMID: 36687336

Abstract

Cell-free protein synthesis is emerging as a powerful tool to accelerate the progress of synthetic biology. Notably, cell-free systems that harness extracted synthetic machinery of cells can address many of the issues associated with the complexity and variability of living systems. In particular, cell-free systems can be programmed with various configurations of genetic information, providing great flexibility and accessibility to the field of synthetic biology. Empowered by recent progress, cell-free systems are now evolving into artificial biological systems that can be tailored for various applications, including on-demand biomanufacturing, diagnostics, and new materials design. Here, we review the key developments related to cell-free protein synthesis systems, and discuss the future directions of these promising technologies.

Keywords: cell-free protein synthesis, synthetic biology, recombinant proteins, metabolic engineering, artificial cells

Acknowledgements

This work was supported by a research grant from Chungnam National University of Korea.

Ethical Statements

The authors declare no conflict of interest.

Neither ethical approval nor informed consent was required for this study.

Footnotes

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  • 1.Nieß A, Siemann-Herzberg M, Takors R. Protein production in Escherichia coli is guided by the trade-off between intracellular substrate availability and energy cost. Microb. Cell Fact. 2019;18:8. doi: 10.1186/s12934-019-1057-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Rudorf S, Lipowsky R. Protein synthesis in E. coli: dependence of codon-specific elongation on tRNA concentration and Codon usage. PLoS One. 2015;10:e0134994. doi: 10.1371/journal.pone.0134994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Jeong K J, Lee S Y. Enhanced production of recombinant proteins in Escherichia coli by filamentation suppression. Appl. Environ. Microbiol. 2003;69:1295–1298. doi: 10.1128/AEM.69.2.1295-1298.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Jin X, Hong S H. Cell-free protein synthesis for producing ‘difficult-to-express’ proteins. Biochem. Eng. J. 2018;138:156–164. doi: 10.1016/j.bej.2018.07.013. [DOI] [Google Scholar]
  • 5.Matthaei J H, Nirenberg M W. Characteristics and stabilization of DNAase-sensitive protein synthesis in E. coli extracts. Proc. Natl. Acad. Sci. U. S. A. 1961;47:1580–1588. doi: 10.1073/pnas.47.10.1580. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Laohakunakorn N, Grasemann L, Lavickova B, Michielin G, Shahein A, Swank Z, Maerkl S J. Bottom-up construction of complex biomolecular systems with cell-free synthetic biology. Front. Bioeng. Biotechnol. 2020;8:213. doi: 10.3389/fbioe.2020.00213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Novikova I V, Sharma N, Moser T, Sontag R, Liu Y, Collazo M J, Cascio D, Shokuhfar T, Hellmann H, Knoblauch M, Evans J E. Protein structural biology using cell-free platform from wheat germ. Adv. Struct. Chem. Imaging. 2018;4:13. doi: 10.1186/s40679-018-0062-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Spirin A S. High-throughput cell-free systems for synthesis of functionally active proteins. Trends Biotechnol. 2004;22:538–545. doi: 10.1016/j.tibtech.2004.08.012. [DOI] [PubMed] [Google Scholar]
  • 9.Bujara M, Schümperli M, Pellaux R, Heinemann M, Panke S. Optimization of a blueprint for in vitro glycolysis by metabolic real-time analysis. Nat. Chem. Biol. 2011;7:271–277. doi: 10.1038/nchembio.541. [DOI] [PubMed] [Google Scholar]
  • 10.Khambhati K, Bhattacharjee G, Gohil N, Braddick D, Kulkarni V, Singh V. Exploring the potential of cell-free protein synthesis for extending the abilities of biological systems. Front. Bioeng. Biotechnol. 2019;7:248. doi: 10.3389/fbioe.2019.00248. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Tinafar A, Jaenes K, Pardee K. Synthetic biology goes cell-free. BMC Biol. 2019;17:64. doi: 10.1186/s12915-019-0685-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Contreras-Llano L E, Meyer C, Liu Y, Sarker M, Lim S, Longo M L, Tan C. Holistic engineering of cell-free systems through proteome-reprogramming synthetic circuits. Nat. Commun. 2020;11:3138. doi: 10.1038/s41467-020-16900-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Pandi A, Grigoras I, Borkowski O, Faulon J L. Optimizing cell-free biosensors to monitor enzymatic production. ACS Synth. Biol. 2019;8:1952–1957. doi: 10.1021/acssynbio.9b00160. [DOI] [PubMed] [Google Scholar]
  • 14.Rosano G L, Ceccarelli E A. Recombinant protein expression in Escherichia coli: advances and challenges. Front. Microbiol. 2014;5:172. doi: 10.3389/fmicb.2014.00172. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Wang S, Majumder S, Emery N J, Liu A P. Simultaneous monitoring of transcription and translation in mammalian cell-free expression in bulk and in cell-sized droplets. Synth. Biol. (Oxf.) 2018;3:ysy005. doi: 10.1093/synbio/ysy005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Nomoto M, Tada Y. Cloning-free template DNA preparation for cell-free protein synthesis via two-step PCR using versatile primer designs with short 3′-UTR. Genes Cells. 2018;23:46–53. doi: 10.1111/gtc.12547. [DOI] [PubMed] [Google Scholar]
  • 17.Harris D C, Jewett M C. Cell-free biology: exploiting the interface between synthetic biology and synthetic chemistry. Curr. Opin. Biotechnol. 2012;23:672–678. doi: 10.1016/j.copbio.2012.02.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Billerbeck S, Härle J, Panke S. The good of two worlds: increasing complexity in cell-free systems. Curr. Opin. Biotechnol. 2013;24:1037–1043. doi: 10.1016/j.copbio.2013.03.007. [DOI] [PubMed] [Google Scholar]
  • 19.Panthu B, Ohlmann T, Perrier J, Schlattner U, Jalinot P, Elena-Herrmann B, Rautureau G J P. Cell-free protein synthesis enhancement from real-time NMR metabolite kinetics: redirecting energy fluxes in hybrid RRL systems. ACS Synth. Biol. 2018;7:218–226. doi: 10.1021/acssynbio.7b00280. [DOI] [PubMed] [Google Scholar]
  • 20.Calhoun K A, Swartz J R. Energizing cell-free protein synthesis with glucose metabolism. Biotechnol. Bioeng. 2005;90:606–613. doi: 10.1002/bit.20449. [DOI] [PubMed] [Google Scholar]
  • 21.Caschera F, Noireaux V. Synthesis of 2.3 mg/ml of protein with an all Escherichia coli cell-free transcriptiontranslation system. Biochimie. 2014;99:162–168. doi: 10.1016/j.biochi.2013.11.025. [DOI] [PubMed] [Google Scholar]
  • 22.Hong S H, Ntai I, Haimovich A D, Kelleher N L, Isaacs F J, Jewett M C. Cell-free protein synthesis from a release factor 1 deficient Escherichia coli activates efficient and multiple site-specific nonstandard amino acid incorporation. ACS Synth. Biol. 2014;3:398–409. doi: 10.1021/sb400140t. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Kim D M, Swartz J R. Regeneration of adenosine triphosphate from glycolytic intermediates for cell-free protein synthesis. Biotechnol. Bioeng. 2001;74:309–316. doi: 10.1002/bit.1121. [DOI] [PubMed] [Google Scholar]
  • 24.Michel-Reydellet N, Woodrow K, Swartz J. Increasing PCR fragment stability and protein yields in a cell-free system with genetically modified Escherichia coli extracts. J. Mol. Microbiol. Biotechnol. 2005;9:26–34. doi: 10.1159/000088143. [DOI] [PubMed] [Google Scholar]
  • 25.Hong S H, Kwon Y C, Martin R W, Des Soye B J, de Paz A M, Swonger K N, Ntai I, Kelleher N L, Jewett M C. Improving cell-free protein synthesis through genome engineering of Escherichia coli lacking release factor 1. Chembiochem. 2015;16:844–853. doi: 10.1002/cbic.201402708. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Marshall R, Maxwell C S, Collins S P, Beisel C L, Noireaux V. Short DNA containing χ sites enhances DNA stability and gene expression in E. coli cell-free transcriptiontranslation systems. Biotechnol. Bioeng. 2017;114:2137–2141. doi: 10.1002/bit.26333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Calhoun K A, Swartz J R. Total amino acid stabilization during cell-free protein synthesis reactions. J. Biotechnol. 2006;123:193–203. doi: 10.1016/j.jbiotec.2005.11.011. [DOI] [PubMed] [Google Scholar]
  • 28.Michel-Reydellet N, Calhoun K, Swartz J. Amino acid stabilization for cell-free protein synthesis by modification of the Escherichia coli genome. Metab. Eng. 2004;6:197–203. doi: 10.1016/j.ymben.2004.01.003. [DOI] [PubMed] [Google Scholar]
  • 29.Ali M, Suzuki H, Fukuba T, Jiang X, Nakano H, Yamane T. Improvements in the cell-free production of functional antibodies using cell extract from protease-deficient Escherichia coli mutant. J. Biosci. Bioeng. 2005;99:181–186. doi: 10.1263/jbb.99.181. [DOI] [PubMed] [Google Scholar]
  • 30.Des Soye B J, Gerbasi V R, Thomas P M, Kelleher N L, Jewett M C. A highly productive, one-pot cell-free protein synthesis platform based on genomically recoded Escherichia coli. Cell Chem. Biol. 2019;26:1743–1754.e9. doi: 10.1016/j.chembiol.2019.10.008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Martin R W, Des Soye B J, Kwon Y C, Kay J, Davis R G, Thomas P M, Majewska N I, Chen C X, Marcum R D, Weiss M G, Stoddart A E, Amiram M, Ranji Charna A K, Patel J R, Isaacs F J, Kelleher N L, Hong S H, Jewett M C. Cell-free protein synthesis from genomically recoded bacteria enables multisite incorporation of noncanonical amino acids. Nat. Commun. 2018;9:1203. doi: 10.1038/s41467-018-03469-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Lajoie M J, Rovner A J, Goodman D B, Aerni H R, Haimovich A D, Kuznetsov G, Mercer J A, Wang H H, Carr P A, Mosberg J A, Rohland N, Schultz P G, Jacobson J M, Rinehart J, Church G M, Isaacs F J. Genomically recoded organisms expand biological functions. Science. 2013;342:357–360. doi: 10.1126/science.1241459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Wang H H, Isaacs F J, Carr P A, Sun Z Z, Xu G, Forest C R, Church G M. Programming cells by multiplex genome engineering and accelerated evolution. Nature. 2009;460:894–898. doi: 10.1038/nature08187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Ahn J H, Hwang M Y, Lee K H, Choi C Y, Kim D M. Use of signal sequences as an in situ removable sequence element to stimulate protein synthesis in cell-free extracts. Nucleic Acids Res. 2007;35:e21. doi: 10.1093/nar/gkl917. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Zawada J F, Yin G, Steiner A R, Yang J, Naresh A, Roy S M, Gold D S, Heinsohn H G, Murray C J. Microscale to manufacturing scale-up of cell-free cytokine production—a new approach for shortening protein production development timelines. Biotechnol. Bioeng. 2011;108:1570–1578. doi: 10.1002/bit.23103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Colant N, Melinek B, Frank S, Rosenberg W, Bracewell D G. Escherichia coli-based cell-free protein synthesis for iterative design of tandem-core virus-like particles. Vaccines (Basel) 2021;9:193. doi: 10.3390/vaccines9030193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Saleh A M, Wilding K M, Calve S, Bundy B C, Kinzer-Ursem T L. Non-canonical amino acid labeling in proteomics and biotechnology. J. Biol. Eng. 2019;13:43. doi: 10.1186/s13036-019-0166-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Rodríguez-Limas W A, Sekar K, Tyo K E J. Virus-like particles: the future of microbial factories and cell-free systems as platforms for vaccine development. Curr. Opin. Biotechnol. 2013;24:1089–1093. doi: 10.1016/j.copbio.2013.02.008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Shin J, Jardine P, Noireaux V. Genome replication, synthesis, and assembly of the bacteriophage T7 in a single cellfree reaction. ACS Synth. Biol. 2012;1:408–413. doi: 10.1021/sb300049p. [DOI] [PubMed] [Google Scholar]
  • 40.Yang J, Lu Y. Physical stimuli-responsive cell-free protein synthesis. Synth. Syst. Biotechnol. 2020;5:363–368. doi: 10.1016/j.synbio.2020.11.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Koch M, Faulon J L, Borkowski O. Models for cell-free synthetic biology: make prototyping easier, better, and faster. Front. Bioeng. Biotechnol. 2018;6:182. doi: 10.3389/fbioe.2018.00182. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Sheng J, Huang L, Zhu X, Cai J, Xu Z. Reconstitution of the peptidoglycan cytoplasmic precursor biosynthetic pathway in cell-free system and rapid screening of antisense oligonucleotides for Mur enzymes. Appl. Microbiol. Biotechnol. 2014;98:1785–1794. doi: 10.1007/s00253-013-5467-8. [DOI] [PubMed] [Google Scholar]
  • 43.Garamella J, Marshall R, Rustad M, Noireaux V. The all E. coli TX-TL toolbox 2.0: a platform for cell-free synthetic biology. ACS Synth. Biol. 2016;5:344–355. doi: 10.1021/acssynbio.5b00296. [DOI] [PubMed] [Google Scholar]
  • 44.Karim A S, Jewett M C. A cell-free framework for rapid biosynthetic pathway prototyping and enzyme discovery. Metab. Eng. 2016;36:116–126. doi: 10.1016/j.ymben.2016.03.002. [DOI] [PubMed] [Google Scholar]
  • 45.Gyorgy A. Leveraging resource competition for part characterization in cell-free extracts. IFAC-PapersOnLine. 2019;52:17–23. doi: 10.1016/j.ifacol.2019.12.230. [DOI] [Google Scholar]
  • 46.Kasi D, Nah H J, Catherine C, Kim E S, Han K, Ha J C, Kim D M. Enhanced production of soluble recombinant proteins with an in situ-removable fusion partner in a cell-free synthesis system. Biotechnol. J. 2017;12:1700125. doi: 10.1002/biot.201700125. [DOI] [PubMed] [Google Scholar]
  • 47.Park Y J, Lee K H, Kim D M. Assessing translational efficiency by a reporter protein co-expressed in a cell-free synthesis system. Anal. Biochem. 2017;518:139–142. doi: 10.1016/j.ab.2016.11.019. [DOI] [PubMed] [Google Scholar]
  • 48.Xu C, Hu S, Chen X. Artificial cells: from basic science to applications. Mater. Today (Kidlington) 2016;19:516–532. doi: 10.1016/j.mattod.2016.02.020. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.Gonzales D T, Yandrapalli N, Robinson T, Zechner C, Tang T Y D. Cell-free gene expression dynamics in synthetic cell populations. ACS Synth. Biol. 2022;11:205–215. doi: 10.1021/acssynbio.1c00376. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.Napiorkowska M, Pestalozzi L, Panke S, Held M, Schmitt S. High-throughput optimization of recombinant protein production in microfluidic gel beads. Small. 2021;17:e2005523. doi: 10.1002/smll.202005523. [DOI] [PubMed] [Google Scholar]
  • 51.Liang Y, Xu X, Li X, Xiong J, Li B, Duan L, Wang D, Xia J. Chondrocyte-targeted microRNA delivery by engineered exosomes toward a cell-free osteoarthritis therapy. ACS Appl. Mater. Interfaces. 2020;12:36938–36947. doi: 10.1021/acsami.0c10458. [DOI] [PubMed] [Google Scholar]
  • 52.Nallani M, Andreasson-Ochsner M, Tan C W D, Sinner E K, Wisantoso Y, Geifman-Shochat S, Hunziker W. Proteopolymersomes: in vitro production of a membrane protein in polymersome membranes. Biointerphases. 2011;6:153–157. doi: 10.1116/1.3644384. [DOI] [PubMed] [Google Scholar]
  • 53.Niederholtmeyer H, Chaggan C, Devaraj N K. Communication and quorum sensing in non-living mimics of eukaryotic cells. Nat. Commun. 2018;9:5027. doi: 10.1038/s41467-018-07473-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54.Kurihara K, Tamura M, Shohda K, Toyota T, Suzuki K, Sugawara T. Self-reproduction of supramolecular giant vesicles combined with the amplification of encapsulated DNA. Nat. Chem. 2011;3:775–781. doi: 10.1038/nchem.1127. [DOI] [PubMed] [Google Scholar]
  • 55.Szostak J W, Bartel D P, Luisi P L. Synthesizing life. Nature. 2001;409:387–390. doi: 10.1038/35053176. [DOI] [PubMed] [Google Scholar]

Articles from Biotechnology and Bioprocess Engineering are provided here courtesy of Nature Publishing Group

RESOURCES