Skip to main content
Frontiers in Aging Neuroscience logoLink to Frontiers in Aging Neuroscience
. 2023 Feb 8;14:1048028. doi: 10.3389/fnagi.2022.1048028

The potential neuroprotective effects of stingless bee honey

Nurdarina Ausi Zulkifli 1, Zurina Hassan 2, Mohd Zulkifli Mustafa 3, Wan Norlina Wan Azman 4, Siti Nurma Hanim Hadie 5, Nurhafizah Ghani 6, Anani Aila Mat Zin 1,*
PMCID: PMC9945235  PMID: 36846103

Abstract

Tropical Meliponini bees produce stingless bee honey (SBH). Studies have shown beneficial properties, including antibacterial, bacteriostatic, anti-inflammatory, neurotherapeutic, neuroprotective, wound, and sunburn healing capabilities. High phenolic acid and flavonoid concentrations offer SBH its benefits. SBH can include flavonoids, phenolic acids, ascorbic acid, tocopherol, organic acids, amino acids, and protein, depending on its botanical and geographic origins. Ursolic acid, p-coumaric acid, and gallic acid may diminish apoptotic signals in neuronal cells, such as nuclear morphological alterations and DNA fragmentation. Antioxidant activity minimizes reactive oxygen species (ROS) formation and lowers oxidative stress, inhibiting inflammation by decreasing enzymes generated during inflammation. Flavonoids in honey reduce neuroinflammation by decreasing proinflammatory cytokine and free radical production. Phytochemical components in honey, such as luteolin and phenylalanine, may aid neurological problems. A dietary amino acid, phenylalanine, may improve memory by functioning on brain-derived neurotrophic factor (BDNF) pathways. Neurotrophin BDNF binds to its major receptor, TrkB, and stimulates downstream signaling cascades, which are crucial for neurogenesis and synaptic plasticity. Through BDNF, SBH can stimulate synaptic plasticity and synaptogenesis, promoting learning and memory. Moreover, BDNF contributes to the adult brain’s lasting structural and functional changes during limbic epileptogenesis by acting through the cognate receptor tyrosine receptor kinase B (TrkB). Given the higher antioxidants activity of SBH than the Apis sp. honey, it may be more therapeutically helpful. There is minimal research on SBH’s neuroprotective effects, and the related pathways contribute to it is unclear. More research is needed to elucidate the underlying molecular process of SBH on BDNF/TrkB pathways in producing neuroprotective effects.

Keywords: stingless bee honey, brain-derived neurotrophic, epileptogenesis, antioxidant, anti-inflammatory, tyrosine receptor kinase B, neuroprotective

Introduction

Several types of honey are well-researched, namely European bee honey (i.e., Manuka honey, jelly bush honey, African jungle honey) and Malaysian bee honey (i.e., Tualang honey and stingless bee honey, SBH; Ahmed and Othman, 2013). Bees are essential in the ecosystem as pollinating and cultivating agents of various plants. It has been used as commercial pollinators, especially stingless bees, due to their non-stinging characteristic (de Oliveira Cruz and de Oliveira Campos, 2009; Bartelli and Nogueira-Ferreira, 2015). Besides, they also play an indispensable role in maintaining genetic variability and fruit quality (Bartelli and Nogueira-Ferreira, 2015). Bee species are divided into Apis sp. (honeybee) and Melipona sp. (stingless bee). In the 1980s, researchers reported that honey could also be collected from the stingless bee. The study has found more than 600 species, including Hymenoptera, Apidae, and Meliponini, the largest stingless bee group of eusocial bees (Lavinas et al., 2019). These species were classified under 60 genera, and Melipona and Trigona were found to be significant in number (Michener, 2013; Lavinas et al., 2019).

Stingless bees are commonly found in various sub-tropical countries, including Africa, America, Australia, Southeast Asia, and Malaysia (Kek et al., 2014; Vijayakumar and Jeyaraaj, 2014). In Malaysia, more than 30 stingless bee species are from the Trigona genus. The most commercialized stingless bee honey is Geniotrigona thoracica Smith, Heterotrigona itama Cockerell, Lepidotrigona Terminata Smith, Tetragonula fuscobalteata Cameron, and Tetraponera Laeviceps (Kelly et al., 2014). Heterotrigona itama is the most popular domesticated stingless bee used in meliponiculture due to its advantages, as it can be easily found, easily kept, and acts as a good pollinating agent for the crop (Kelly et al., 2014; Wong et al., 2019; Shamsudin et al., 2019a). The honey produced by this stingless bee is known as Meliponine honey, SBH, pot-honey, and Kelulut honey (in Malaysia; Souza et al., 2006).

Besides honey, stingless bees also produce other products, including propolis, beebread, cerumen, and bee pollen, which have beneficial medicinal properties (Al-Hatamleh et al., 2020). Stingless bees build their nest in hollows of trunks, branches, and tree roots and in ant or termite nests to store their honey collected from nectars, honeydew, and fruit juices (Ávila et al., 2018; Grüter, 2020). In contrast to Apis mellifera honeybees, stingless bees stores honey in a little resin pot toward the end of the nest (Kek et al., 2014). Stingless bees have well-defined characteristics, such as vestigial sting, travel shorter distances for food searching, high moisture content, and non-sting morphology (Vazhacharickal, 2016; Ávila et al., 2018; Mokaya et al., 2022). Moreover, stingless bees can collect nectar and honeydew from small flowers due to their smaller body size (2–5 mm) compared to Apis mellifera (Vazhacharickal, 2016; Ngaini et al., 2021; Mokaya et al., 2022). Heterotrigona itama species can collect more honey than other SBH families, such as Tetrigona apicalis and Tetragonula laeviceps (Zainin and Hassan, 2021).

SBH has many beneficial effects, including anti-inflammatory, anti-microbial, antibacterial, anti-diabetic, anti-cancer, and wound healing properties (Ávila et al., 2018; Zulkhairi Amin et al., 2018). It was reported that flavonoids and phenolic compounds contribute to the potential beneficial effects via antioxidative and anti-inflammatory activities (Cianciosi et al., 2018; Kwon et al., 2019). For example, luteolin, a flavonoid, can reduce seizure scores, glutamate levels, neuronal cell death, and microglial activation in rat hippocampus of the kainic acid (KA)-induced excitotoxicity model (Lin et al., 2016). Therefore, this led to a postulation that SBH has a high potential to combat oxidative stress, a significant cause of neuroinflammation that can result in neuronal apoptosis and death. For instance, high antioxidant content can prevent lipid peroxidation and protective effects on cell membrane integrity via catabolism suppression (Sawaya and Marcucci, 2011). Moreover, sub-chronic (35 days) supplementation of SBH improves mice’s spatial working and reference memories. These results might be due to the phenylalanine compound, a dietary amino acid that has memory-enhancing effects by acting directly on BDNF, thus improving brain signaling and physiology (Mustafa et al., 2019).

Nutritional value and physicochemical properties of SBH

The stingless bee belongs to the Meliponinae subfamily of bees and produces honey and other bee products, including pollen, beeswax, propolis, and royal jelly (Rasmussen and Cameron, 2009; Mustafa et al., 2018). In contrast, to sting honey bees, stingless bees store their honey in vertical jars formed of cerumen, containing more flavonoids and antioxidant qualities than other kinds of honey (Vit et al., 2004; Abd Jalil et al., 2017; Alvarez-Suarez et al., 2018). The physical properties of honey samples determine the quality, duration of shelf life, and biological activities. Honey properties and composition depend on climatic and environmental factors (Iglesias et al., 2012). The colour of SBH depends on bee colonies, while the taste depends on the plants of collected nectar (Kulkarni et al., 2017). In comparison to honey bees, SBH has more nutrients and mineral composition. Due to their tiny size, bees may fit within a more significant number of florals, increasing the honey’s polyphenol content. Therefore, it increases the variety of bioactive chemicals found in honey (Kek et al., 2014; Biluca et al., 2016; Ranneh et al., 2018).

Studies have reported that SBH is golden, slightly brown, and translucent (Gomes et al., 2010). Colour intensity represents the concentration of mineral content, phenolic content, and pigments. The presence of colour pigments in honey, such as carotenoids and some flavonoids, is indicated by the absorbance (ABS) ABS450 colour intensity (Beretta et al., 2005). A previous study on physicochemical analysis of honey reported higher ABS 450 values of SBH, indicating that this type of honey contains more colour pigments than other Malaysian honey (Chan et al., 2017). A study demonstrated that the ABS450 values of various kind of Malaysian SBH range between 169.89–805 mAU; while a higher ABS450 value in the range of 1029.00–2103.17 mAU were documented in kelulut honey (Khalil et al., 2011a; Moniruzzaman et al., 2013b). The dark brown colour intensity indicates the presence of high phenolic content in honey (Ahmed and Othman, 2013). In this context, kelulut honey has a high ABS450 value and lower ash content, indicating high mineral content.

Moisture content is one of the honey quality factors since it affects the shelf-life length and microbiological activity stability (Lage et al., 2012; Shahnawaz et al., 2013; Sujanto et al., 2021). Honey’s moisture content changes owing to nectar flux strength, maturity level, beekeeper handling method, extraction condition, processing, and storage method, seasonal weather conditions, and regional humidity of the harvest location (Moniruzzaman et al., 2013a,b; Sujanto et al., 2021). Studies have reported that the moisture content in SBH is higher when compared to Apis mellifera honey (Wang and Li, 2011; Silva et al., 2013). Therefore, more outstanding care is needed to handle honey with higher moisture as it can affect the fermentation activity and shelf life (Wang and Li, 2011; da Silva et al., 2013; Silva et al., 2013). To prolong the shelf-life, drying at a low temperature is recommended after harvesting (Chan et al., 2017).

The microbiological stability of honey is determined by its pH since most bacteria prefer neutral or slightly alkaline environments to flourish in (Silva et al., 2009). The organic acid content in honey varies between samples due to the honey’s floral origin, fermentation rate of sugars to alcohol, bee species, and oxidation to carboxylic acids (Mokaya et al., 2022). Honey with a low pH value showed greater microbial stability, thus increasing the shelf-life duration (Lage et al., 2012). Studies have reported that Trigona honey (Heterotrigona and Geniotrigona spp.) has lower pH and higher free acidity than Apis mellifera honey (Shamsudin et al., 2019b). The pH value of Malaysia kelulut honey is comparable to the pH value of SBH from other countries. It was reported that the low pH range (3.22–3.69) of kelulut can inhibit microorganism growth, thus, preventing contamination of honey (Do Nascimento et al., 2015).

Hydroxymethylfurfural (HMF) content in honey acts as an indicator of honey’s freshness. It is influenced by several variables, including storage conditions, pH level, heating time and temperature, and floral origin (de Almeida-Muradian et al., 2013). HMF is formed due to the reaction between sugars—such as fructose—and acids. To maintain the low HMF level in honey, a proper storage environment with low-temperature exposure plays a significant role (Shapla et al., 2018; Mokaya et al., 2022). A low HMF level indicates fresh and high-quality honey. Meanwhile, high HMF level is associated with degradation, heat exposure, poor handling, and storage conditions. HMF concentration could increase in the heating process caused by the acid-catalyzed dehydration reaction of hexose sugars like fructose and glucose (Singh and Bath, 1997; Gomes et al., 2010; Khalil et al., 2010).

Honey is a concentrated carbohydrate solution composed of various reducing sugars, including fructose and glucose. The sugar content level of SBH differs depending on the geographical origin, the flora, and the vegetation in that region (Biluca et al., 2016; Chuttong et al., 2016; Se et al., 2018). The primary sugar, sucrose, are found in small quantity and will be broken down by a digestive enzyme (Grüter, 2020). It also contains non-reducing sugars such as sucrose and maltose (Ávila et al., 2018; Zulkhairi Amin et al., 2018; Sujanto et al., 2021). A study has demonstrated that the sugar content in SBH ranges between 68% and 73%. Several studies have reported that the reduced sugar content of SBH is more than 60% (Biluca et al., 2016; Chuttong et al., 2016; Se et al., 2018). SBH has a high fructose-reducing sugar level (48.1%) but lower than Apis mellifera honey standards (Biluca et al., 2016; Chuttong et al., 2016). A study has demonstrated that the sugar content for Heterotrigona itama, Geniotrigona thoracica, and Lepidotrigona terminate is approximately 35, 34, and 53% of maltose/trehalulose, respectively, (Grüter, 2020). The study has demonstrated that Malaysian Trigona SBH has a low concentration level of fructose and glucose (15.4%–24.7%) when compared to Apis mellifera (51.0%) (Shamsudin et al., 2019b).

Phytochemical compounds found in SBH and their potential neuroprotective effects

Phytochemical compounds are essential in determining honey quality due to their potential properties, such as antimicrobial, anticancer, anti-inflammatory, and antioxidant (Mokaya et al., 2022). The concentration and type of phenolic content and total flavonoid content (TFC) for each kind of honey are affected by floral origins, seasonal factors, and species of bee (Saxena et al., 2010; Tenore et al., 2012; Ismail et al., 2016; Ávila et al., 2019). Flavonoid groups found in honey include flavonols (i.e., myricetin, kaempferol, quercetin, isorhamnetin, pinobanksin, rutin, and galangin), flavones (i.e., genkwanin, luteolin, apigenin, tricetin, and chrysin), and flavanones (i.e., pinocembrin and pinostrobin; Hossen et al., 2017; Zulkhairi Amin et al., 2018). A study has reported that the TFC of Trigona SBH observed were higher when compared to other Malaysia Apis honey (Ismail et al., 2021). Meanwhile, the phenolic group found in honey includes the hydroxybenzoic acids (methyl syringate, gallic acid, syringic acid, benzoic acid, and 4-hydroxybenzoic acid) and hydroxyl-cinnamic acids (chlorogenic, vanillic, caffeic, p-coumaric, and ferulic acids; Hossen et al., 2017; Zulkhairi Amin et al., 2018). A study has reported that the total phenolic content (TPC) of Trigona SBH is higher when compared to Apis Mellifera (Abu Bakar et al., 2017; Ranneh et al., 2018).

Numerous research has examined the health benefits of polyphenols, including their antioxidant and neuroprotective effects on various disorders related to the nervous system (Table 2; Abd Aziz et al., 2019; Hazirah et al., 2019; Arshad et al., 2020). SBH has a high concentration of polyphenol chemicals, which makes it effective in promoting cell growth, preserving the cellular structure, and protective effect against free radicals in the region of injury (Abd Jalil et al., 2017; Meo et al., 2017; Cianciosi et al., 2018; Mohamad et al., 2018). Gallic, coumaric, caffeic acids, catechin, kaempferol, and apigenin are the primary antioxidants in honey (Chew et al., 2018). Studies have suggested that phenolic substances have protective effects on cell membranes by decreasing lipid peroxidation and removing free radicals (Chaudhuri et al., 2007). A study has claimed that both honey bee honey (HBH) and SBH can counteract reactive oxygen species (ROS; Twilley and Lall, 2014), whereby the phenolic acid extracted from SBH can reduce the production of ROS (Borsato et al., 2014). Kaempferol can inhibit the effects of free radicals, including NO synthase (NOS) and cyclooxygenase-2 (COX-2; Crespo et al., 2008).

Table 2.

List of the main compounds found in SBH and its potential neuroprotective properties.

Compounds Biological activity (in vivo/ in vitro) Properties References
Kaempferol Kaempferol can inhibit oxidative damage and neuroinflammation in spinal cord injury. Antioxidant, anti-inflammatory Pan et al. (2020); Ahmed et al. (2021); Liu et al. (2021); Chang et al. (2022); Jafari et al. (2022); Lopez-Sanchez et al. (2022)
Kaempferol shows neuroprotective effects by reducing neuropathic pain in rats and neuroinflammation in BV2 microglial cells. Analgesic, anti-inflammatory
Kaempferol has neuroprotective effects against Parkinson’s disease model and SH-S5Y5 cells. Kaempferol shows inhibitory effects on oxidative and inflammatory markers. Antioxidant, anti-inflammatory
Kaempferol treatment has neuroprotective against neurodegeneration in the striatum and hippocampus of 3-nitropropionic acid (NPA)-induced model. Antioxidant, improves memory
The study showed that kaempferol attenuates epileptic seizure severity. After kaempferol treatment, the result shows the downregulation of pro-inflammatory and upregulation of anti-inflammatory cytokines in the epileptic model. Antioxidant, anti-inflammatory
Catechin The study showed that catechin attenuates epileptic seizure severity. After catechin treatment, the result shows the downregulation of pro-inflammatory and upregulation of anti-inflammatory cytokines in the epileptic model. Antioxidant, anti-inflammatory Ahmed et al. (2021)
Phenylalanine SBH supplementation has the potential to improve spatial memory performances via BDNF signaling Improves memory, antioxidants Mustafa et al. (2019)
Chrysin Chrysin treatment has neuroprotective effects against epileptic rat models by reducing neuronal and oxidative damage. Antioxidant Shooshtari et al. (2020); Abd Al Haleem et al. (2021); Zhang et al. (2021)
Chrysin treatment has neuroprotective effects by attenuating neuronal degeneration, inflammation, and oxidative damage. Besides, also shobehaviordepressant effects by reducing their depressive-like behavior. Antioxidant, anti-inflammatory, anti-depressant
The reported that chrysin has neuroprotective effects by improving cognitive impairments, reduces oxidative damage and induces neurons survival rate. Antioxidant
Apigenin Apigenin has antidepressant effects on chronic stress model by regulating autophagy. Antidepressant Zhang X. et al. (2019); Singh et al. (2021); Yadav et al. (2022)
The study reported that apigenin has neuroprotective effects on neurotoxicity model by inhibiting apoptotic markers, regulating neurotransmitter, downregulate inflammatory markers and reduces oxidative damage. Antioxidant, anti-inflammatory.
Apigenin shows neuroprotective effects on multiple sclerosis-induced rats by reducing pathological changes and demyelination volume. Moreover, restores abnormal apoptotic markers as well as reduces inflammatory cytokine level and oxidative damages. Anti-apoptotic, anti-inflammatory and antioxidant
Myricetin Myricetin has neuroprotective effects on seizure-induced models by regulating molecular pathways involves in epileptogenesis which are BDNF/TrkB, matrix metalloproteinase-9
and GABAA. Besides, it also reduces neuronal damage in hippocampus.
Antioxidant, anti-apoptotic Sun et al. (2019)
Naringenin Naringenin has anti-convulsant effects against pentylenetetrazole-induced seizure model. Anti-convulsant Copmans et al. (2018); Mokarrami et al. (2022)
Naringenin has neuroprotective effects against Alzheimer’s model by improving memory performances, and total neuronal numbers. Antioxidant, improves memory performances
Caffeic acid The effects of SBH and caffeic acid have comparable neuroprotective effects against HCHF-induced metabolic syndrome in the rat’s brain Antioxidant, anti-inflammatory Arshad et al. (2020); Muhammad Abdul Kadar et al. (2022)
Ferulic acid Ferulic acid has neuroprotective effects against pentylenetetrazol-induced seizure model by improving learning and memory performances as well as reduces oxidative and neuronal damage. Improves learning and memory performances,anti-oxidant, anti-apoptotic. Zhang S. -H. et al. (2019); Park et al. (2022)
The study reported that ferulic acid has neuroprotective effects against Alzheimer’s disease model by reducing neuroinflammation and oxidative damage. Anti-inflammatory, antioxidant
4-hydroxybenzoic acid SBH has potential protective roles against LPS-induced rat model. SBH supplementation can potentially attenuate inflammation and oxidative stress via Nrf2, NF-κB and p38 MAPK signaling Antioxidant, anti-inflammatory Ranneh et al. (2019)
Quercetin The study showed that catechin attenuates epileptic seizure severity. After catechin treatment, the result shows the downregulation of pro-inflammatory and upregulation of anti-inflammatory cytokines in the epileptic model. Antioxidant, anti-inflammatory Ahmed et al. (2021)

Moreover, SBH has also been reported to have many beneficial effects, including anti-inflammatory, anti-microbial, antibacterial, anti-diabetic, anti-cancer, and wound healing properties (Table 3; Ávila et al., 2018; Zulkhairi Amin et al., 2018). SBH showed an outstanding ability to reduce infection, antioxidative and anti-inflammatory activity (Kwapong et al., 2013). The high antioxidant content can prevent lipid peroxidation and has protective effects on cell membrane integrity via catabolism suppression (Sawaya and Marcucci, 2011). Studies have demonstrated that flavonoids and phenolic compounds exert potential beneficial effects via antioxidative and anti-inflammatory activities (Table 1; Cianciosi et al., 2018; Kwon et al., 2019). For example, luteolin, a flavonoid, can reduce seizure scores, glutamate levels, neuronal cell death, and microglial activation in rat hippocampus of the KA-induced excitotoxicity model (Lin de Sousa, 2016). Therefore, it led to a postulation that SBH has a high potential to combat oxidative stress, a major cause of neuroinflammation that can result in neuronal apoptosis and death. In conclusion, these beneficial properties of SBH due to the compounds might contribute to neuroprotective potentials on various neurological disorders.

Table 3.

List of beneficial properties of different SBH species.

SBH species Origin Biological activity (in vivo/ in vitro) Properties References
H.itama sp. Malaysia SBH can potentially improve cognitive performance by attenuating anxiety and improving the memory performance of high-carbohydrate high fructose (HCHF).
The effects of SBH and caffeic acid have comparable neuroprotective effects against HCHF-induced metabolic syndrome in the rat’s brain
Reduces anxiety, improves memory, Antioxidant, anti-inflammatory Arshad et al. (2020); Muhammad Abdul Kadar et al. (2022)
Malaysia SBH reduces the body weight, BMI, adiposity index and organ weight of a high-fat diet obese rat model. Also, SBH can regulate lipid metabolism and hepatoprotective effects in obese rats. Hepatoprotective Mohd Rafie et al. (2018)
Malaysia The study reported that SBH promotes the expression level of collagen type I and metalloproteinase (MMP)-1 in the cellular aging of human dermal fibroblast cells. Antiaging, antioxidant Abdul Malik et al. (2020)
Malaysia The study has reported that SBH inhibits the growth of malignant glioma cells. Antioxidant, anticancer Ahmad et al. (2019)
Malaysia SBH supplementation has the potential to improve spatial memory performances via BDNF signaling Improves memory, antioxidants Mustafa et al. (2019)
G.thoracica sp Malaysia SBH might have potential protective effects on the pancreas against streptozotocin-nicotinamide-induced diabetic rats. Antidiabetic Aziz et al. (2017)
Tetragonula biroi sp Indonesia SBH able to reduce the body weight of streptozotocin-induced diabetic mellitus rats. This might be due to reduction of fats and protein formation. Antidiabetic Sahlan et al. (2020)
Trigona sp. Malaysia SBH has potential protective roles against LPS-induced rat model. SBH supplementation can potentially attenuate inflammation and oxidative stress via Nrf2, NF-κB and p38 MAPK signaling Antioxidant, anti-inflammatory Ranneh et al. (2019)
Malaysia SBH induces the cell viability of the lymphoblastoid cell line (LCL). The high concentration of phenolic and flavonoid compounds presents in SBH has a protective role against oxidative damage. Antioxidant Hazirah et al. (2019)
Malaysia SBH reduces DNA damages on autism-LCL. This might be due to the antioxidant in SBH thus, prevent oxidative damage. Antioxidant Nayan et al. (2020)
Malaysia SBH has protective effects against oxidative damage in hydrogen peroxide-induced in vitro model and inflammation in LPS-induced in vitro model. Antioxidant, anti-inflammatory Ooi et al. (2021)
Malaysia SBH has potential chemopreventive on colon cancer due to its high antioxidant Chemopreventive, antioxidant Saiful Yazan et al. (2016)
Malaysia SBH produces significant inhibitory effects by controlling the Escherichia coli cell culture growth. Antimicrobial Al Kafaween et al. (2019)
Malaysia SBH induces proliferation and has beneficial effects on the proliferation of dermal fibroblast cells. Therefore, has potential effects in promoting wound healing. Wound healing Nordin et al. (2018)
Malaysia Sbh has protective effects on spermatogenesis process in diabetic rats. Antioxidant Budin et al. (2017)

Table 1.

Physicochemical parameters honey samples of various stingless bees species.

Refs Country of origins Honey species pH value Moisture content HMF content (mg/kg) Reducing sugar (g/100 g) Sucrose (g/100 g) Properties
Budin et al. (2017); Chan et al. (2017); Al Kafaween et al. (2019); Hazirah et al. (2019); Ranneh et al. (2019); Arshad et al. (2020) Malaysia Trigona 26.00, 30.42 (g/100 g) Antioxidant
Antibacterial
Anti-obesity
Anti-inflammatory, Improve memory, Reduces anxiety
Fatima et al. (2018); Mohamad et al. (2018); Nordin et al. (2018) Malaysia Trigona itama 23.3, 31.7% Antiproliferative
de Oliveira Neto and Santos (2011); Ávila et al. (2019) Brazil Scaptotrigona bipunctata 3.97 19.07 (g/100 g) 4.85 60.01 4.65 Antioxidant
Biluca et al. (2020) Brazil Melipona quadriasciata 6.27, 42.52 3.18, 6.64 52.8, 71.63 0.85, 1.28 Antioxidant Anti-inflammatory
Carvalho et al. (2009); Sousa et al. (2013); Do Nascimento et al. (2015); Biluca et al. (2016, 2020) Brazil Tetragonisca angustula 3.72, 4.77 23.2, 25.99 (g/100 g) 9.39, 27.99 43, 66.65 0.95, 2.1 Antioxidant Anti-inflammatory
Ng et al. (2017); Fatima et al. (2018) Malaysia Trigona thorasica 2, 33.7% Anti-inflammatory
Aziz et al. (2017); Abu Bakar et al. (2017); Selvaraju et al. (2019) Geniotrigona thoracica 3.36 28.17 (g/100 g) - - - antioxidant
Abu Bakar et al. (2017); Mustafa et al. (2019); Abdul Malik et al. (2020) Brazil Melipona marginata 2.93, 3.67 32.44, 32.65 (g/100 g) 48.09 63.5, 67.39 0.85 Antioxidant Anti-inflammatory

Antioxidant and neuroprotective effects of SBH bioactive compounds

Natural antioxidant compounds in honey, including amino acids, proteins, enzymes, ascorbic acid, carotenoid-like substances, organic acids, Maillard reaction, proteins, and polyphenols, especially flavonoids and phenolic acids, contribute to the various beneficial effects of honey (Zulkhairi Amin et al., 2018). SBH, such as Geniotrigona thoracica and Heterotrigona itama, have been demonstrated to have more antioxidant activity than Manuka honey (Apis mellifera) and higher mineral contents than honey made by Colombian stingless bees (Abu Bakar et al., 2017). Moreover, the higher concentration of polyphenols and phenolic acids contribute to more significant antioxidant effects than other local honey, including Tualang honey (Biluca et al., 2016). Kelulut honey contains higher TPC, and higher antioxidant activity was also demonstrated in the ferric-reducing antioxidant potential (FRAP) assay compared to New Manuka honey. Meanwhile, the study also reported higher TFC when compared to Portuguese heather honey and Spanish rosemary honey (Ferreres et al., 1994; Hazirah et al., 2019).

The brain is the most sensitive organ to oxidative stress due to its poor repair capacity, high metabolic rate, and high-level consumption of glucose and oxygen (Halliwell, 1992; Dan Dunn et al., 2015). The brain consumes a ~ 10-fold higher level of oxygen when compared to other organs (Gandhi and Abramov, 2012). Besides, the high polyunsaturated fatty acid in the brain makes it more susceptible to lipid peroxidation. Moreover, the brain is also more vulnerable to hydroxyl radical formation due to the high iron load (Halliwell, 1999; Jellinger, 2003; Mariani et al., 2005). The neurons are more prone to cellular damage caused by excessive free radicals than glial cells (Bolaños et al., 2010). The hippocampus and frontal cortex are the most vulnerable brain regions to damage caused by ROS overproduction (Wang and Michaelis, 2010; Jiang et al., 2017; Roganovic et al., 2019). Moreover, the hippocampus is the most susceptible to neurodegeneration, which is also essential in learning, memory, spatial navigation, and emotional behavior (Rafiee Sardooi et al., 2021).

Oxidative stress plays an essential role in the pathogenesis of various neurological and neurodegenerative diseases, including epilepsy, Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis (ALS; Perry et al., 2002; Migliore et al., 2005; Ashrafi et al., 2007). Overconcentration of oxygen radicals will lead to changes in intracellular calcium ions homeostasis which plays a critical role in neuronal excitability and synaptic transmission. Therefore, it results in the vulnerability of neurons and neuronal loss (Puttachary et al., 2015). The initiating brain lesion and seizure increase ROS production, RNS levels, and oxidative stress (Pearson-Smith and Patel, 2017). The production of free radicals during oxidative stress will cause damage to the structural and functional integrity of neuronal cells in various neurological diseases (Rao et al., 2016; Yaacob et al., 2018). It will cause neuronal insult by protein oxidation, lipid peroxidation and DNA damage (Medda et al., 2020). Neurotoxicity in acute and chronic neurological diseases might be due to oxidative stress due to excessive activation of glutamate receptors (Choi, 1988). Glutamate-induced neurotoxicity led to the overproduction of ROS and RNS, resulting in damage to lipids, protein, DNA, and neuronal cell death (Lucas and Newhouse, 1957; Dugan et al., 1995).

The high oxidative stress will cause a neurotoxic effect which is also a critical factor in cognitive dysfunctionalities, including learning and memory performances (Özbalci et al., 2013; Engwa, 2018). The study has shown a significant correlation between antioxidant activity and polyphenols concentration (Kamaruzzaman et al., 2019; Mohamed et al., 2012). Phenolic compounds in honey can inhibit ROS formation as a defence mechanism against oxidative stress (Mijanur Rahman et al., 2014). In an in vitro model using primary hippocampal neuronal cells, apigenin, a phenolic substance, exerts a protective effect against harm brought on by oxygen–glucose deprivation and reperfusion (Han et al., 2012). Honey contains p-coumaric acid, kaempferol, luteolin, and apigenin, reducing potential oxidative stress (Ferguson et al., 2005). Apigenin prevents KA-induced excitotoxicity in the hippocampus in a dose-dependent manner by quenching reactive oxygen species and preventing glutathione (GSH) depletion (Han et al., 2012). This compound has demonstrated ROS scavenging activity and prevents the GSH level reduction in the KA-induced excitotoxicity model (Han et al., 2012). Other compounds, such as caffeic acid and catechin, were reported to play an essential role in learning and memory (Sutherland et al., 2006; Hu et al., 2008). Antioxidants exert protective effects by attenuating ROS and thus inhibiting unwanted chain reactions (Ha et al., 2019).

SBH extract can reduce the production of ROS, leukocyte migration, and oedema, contributing to anti-inflammatory impact (Borsato et al., 2014). Both in vivo and in vitro studies have shown that certain flavonoids significantly stabilize the lysosomal membrane (Leelaprakash and Dass, 2011). Studies conducted in vitro have demonstrated that phenolic compounds can exert antioxidant activity by acting on lipid bilayers, particularly those found in lipoprotein domains and cell membranes, which are lipid peroxidation targets (Chaudhuri et al., 2007). Lysosomal stabilization is essential for managing the inflammatory response because it prevents the extracellular release of lysosomal components of activated neutrophils, such as bacterial enzymes and proteases, which can worsen tissue inflammation and damage. Inflammation can cause the release of lysosomal enzymes, leading to several disorders (Leelaprakash and Dass, 2011).

Studies have demonstrated that SBH significantly ameliorates oxidative stress through nuclear factor kappa-light-chain-enhancer (NF-κB) p65 and p38 mitogen-activated protein kinase (MAPK), and Nrf2 expression in lipopolysaccharide LPS-induced rats (Ranneh et al., 2019). Moreover, the antioxidant activity of SBH was demonstrated against LPS-induced inflammation by inhibiting nitric oxide production via nitric oxide synthase (Ooi et al., 2021). Studies have proven that consuming honey can decrease oxidative damage, enhance cognitive performance, and suppress memory and learning decline. Antioxidants in honey play a vital role in suppressing anxiety-like behavior in mice (Barros et al., 2006). Kelulut honey, can ameliorate anxiety behavior, significant memory retention and protective effects on pyramidal neuronal cells in the hippocampus brain region (Arshad et al., 2020). Besides, honey also showed positive neuroprotective effects on lead-induced neurotoxicity based on open field test and Morris water maze results as well as significant increase in antioxidant activities (catalase, SOD and GSH) results (Abdulmajeed et al., 2016).

Anti-neuroinflammatory effects and SBH bioactive compounds

Brain inflammation due to brain disruption triggers inflammatory factors secretion from neurons, astrocytes, and microglia, including interleukin-1β (IL-1β) and interleukin-6 (IL-6), interferon-γ (IFNγ), tumor necrosis factor-α (TNF-α) and transforming growth factor-β (TGF-β) (Vezzani et al., 2011, 2013; Kim et al., 2012). Inflammation in the brain causes the disruption of synaptic signaling and plasticity, impairs inhibitory transmission and blood brain barrier (BBB) permeability, lower the seizure threshold and promotes epileptogenesis (Abbott, 2000; Weissberg et al., 2011; Vezzani et al., 2013). Neuroinflammation involves the generation of seizures and directly affects neurovascular and glial functions (Sternberg, 2000; Vezzani et al., 2011, 2012). Meanwhile, systemic inflammation triggers epileptiform neuronal discharge through ionic and neurotransmitter physiology, which are the consequences of impairments in the blood–brain barrier (Sternberg, 2000; David et al., 2009; Heinemann et al., 2012).

SBH antioxidant effect prevents the signaling of NF-ĸB and MAPK also reduces the production of inflammatory factors IL-6, TNF-α and IFN-γ (Ranneh et al., 2019; Biluca et al., 2020). Flavonoid compounds such as quercetin act as anti-inflammatory and antioxidant agents. Several studies have shown that SBH can reduce proinflammatory cytokines IL-6, interleukin-2p70 (IL-2p70), TNF-α and IFN-γ and anti-inflammatory cytokine, IL-10 expression levels. These substances can inhibit the generation of iNOS, COX-2, cytokine production, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, ROS, and proinflammatory mediators (Vezzani et al., 1999; Wu et al., 2016). Flavonoids can directly affect cellular receptors and proteins (kinases and enzymes), which can cause physiological changes and changes in the way genes are expressed. This could help protect neurons by making inflammatory responses more effective, which can directly change neuroinflammatory cascades or get rid of free radicals (Copmans et al., 2018).

High antioxidant substances in honey are used in studies related to inflammation and the associated diseases, as oxidative stress is the critical factor in determining the inflammatory status (Arulselvan et al., 2016; Al-Hatamleh et al., 2020). Antioxidant activity prevents inflammation from getting worse by blocking enzymes from working. These enzymes are nitric oxide synthases (NOS), cytochrome P450 (CP450), NADPH oxidase (NOX), xanthine oxidase (XO), lipoxygenase (LO), cyclooxygenase (COX), and myeloperoxidase (MP). The latter prevents ROS production, reducing oxidative stress and producing an anti-inflammatory effect (Al-Hatamleh et al., 2020). Flavonoids inhibit enzymes and other inflammatory mediators such as reactive C protein or adhesion molecules. One strategy to alter the sequence of molecular occurrences that leads to the overexpression of those mediators is to suppress transcription factors like NF-ĸB and activator protein-1 (AP-1) by inhibiting protein kinases involved in signal transduction. The study has reported that flavonoids potentially reduce inflammation by boosting antioxidant defences by activating the NF-E2-related factor 2 (Nrf2) (Leelaprakash and Dass, 2011; González-Gallego et al., 2014).

Several studies have demonstrated the ability of SBH to exert various beneficial effects due to the high concentration and diversity of phenolic acid and flavonoid compounds (Sousa de Sousa, 2016; de Oliveira et al., 2017; Alvarez-Suarez et al., 2018; Souza et al., 2021). For example, antioxidant and anti-inflammatory effects due to flavonoids and polyphenols content improve cognitive disabilities and protective effects via neuronal and glial pathways (Mohamed et al., 2012; Kamaruzzaman et al., 2019). Studies have also shown that ursolic acid, p-coumaric acid, and gallic acid might lessen apoptotic symptoms in neuronal cells, such as nuclear morphological alterations, DNA fragmentation, and cell blebbing (Hong et al., 2012). Flavonoids such as quercetin, resveratrol, apigenin, kaempferol, epicatechin, and curcumin can influence mitochondrial processes. These compounds act by inhibiting enzymes, scavenging ROS, or altering the activity of different transcription factors involved in oxidative pathways (Gao et al., 2007; Lagoa et al., 2011; Gibellini et al., 2015).

Cognitive, learning, and memory function and SBH bioactive compounds

Several studies have demonstrated the abilities of honey to promote cognitive functions in the inflammatory-induced model due to the presence of various compounds (Arshad et al., 2020; Yaacob et al., 2020; Adeniyi et al., 2022) Honey can improves anxiety, cognitive behavioral and locomotor activity dysfunctionalities in lipopolysaccharide-induced neuroinflammation model (Adeniyi et al., 2022). SBH and its phenolic content prevent neuroinflammation, act against neuronal damage caused by neurotoxins, and induce memory, learning, and cognitive function in the brain (Rao et al., 2016; Meo et al., 2017; Yaacob et al., 2018). Moreover, the high antioxidant activity of quercetin, a flavonoid compound in SBH, promotes memory performance and synaptic plasticity of hippocampal neuronal cells in the chronic lead exposure experimental model (Mijanur Rahman et al., 2014). Kelulut honey can improve spatial memory impairment in the LPS-induced rats model and anxiety in the metabolic syndrome rat model (Arshad et al., 2020; Yaacob et al., 2020).

Previously, studies have shown that caffeic acid (phenolic acid) and catechin (flavonoids) play an essential role in learning and memory performances (Sutherland et al., 2006; Hu et al., 2008). Other bioactive compounds, including kaempferol, catechin, quercetin, and caffeic acid found, which are also present in SBH, have demonstrated protective effects against memory impairment in various (Dajas et al., 2003; Unno et al., 2007; Park et al., 2010; Cai et al., 2011; Anwar et al., 2012; Zulkhairi Amin et al., 2018). Besides, other flavonoid compounds, quercetin, also play a vital role in memory and synaptic plasticity in memory impairment-induced in vitro models (Hu et al., 2008; Kumar et al., 2008). The study has reported that honey-supplemented rats showed better memory performances when compared to sucrose-only-fed rats (Chepulis et al., 2009). So, it’s clear that sugar content alone does not improve memory. There are also other compounds in honey that do (Kishore et al., 2011; Khalil et al., 2011a, b).

High flavonoid content in SBH may be comparable to other natural products (green tea, blueberry, and Ginkgo biloba) and acts through hippocampus BDNF. Therefore, suggesting that it can contribute to better learning and memory processes (Williams et al., 2008; Li et al., 2009a,b; Hou et al., 2010; Rendeiro et al., 2013). Previously, the flavones compound mimicked neurotrophin’s binding ability by inducing the tyrosine phosphorylation and dimerization of TrkB. Moreover, it can mimic BDNF’s ability to activate the downstream pathways essential in neurogenesis and synaptic plasticity (Jang et al., 2010; Gupta et al., 2013; Wurzelmann et al., 2017; Paul et al., 2021). Furthermore, a study on SBH supplementation showed that it could induce synaptic plasticity and synaptogenesis, thus improving learning and memory performance in the brain (Mustafa et al., 2018). In addition, studies have reported that seizures could stimulate BDNF gene expression levels and upregulate TrkB activation in the epileptic experimental model (McNamara and Scharfman, 2012). Moreover, BDNF contributes to the adult brain’s lasting structural and functional changes during limbic epileptogenesis by acting through the cognate receptor TrkB (Binder et al., 1999; Scharfman et al., 2005).

Studies have demonstrated the amino acid profile and concentration in various honey samples, and the honey’s botanical and geographical origins may affect its phenylalanine content (Shamsudin et al., 2019a). Other study has also highlighted the presence of phenylalanine, a dietary amino acid, in SBH (Uren and Turnley, 2014; Ramli et al., 2019; Slutsky and Etnier, 2019). Previously, studies have suggested a dietary amino acid might have memory-enhancing effects by acting directly on BDNF signaling pathways (Mustafa et al., 2019). This dietary amino acid converts to tyrosine, a vital component of the tyrosine receptor kinase B (TrkB), a BDNF receptor (Lu et al., 2018). Previously, a study has reported that phenylalanine decreases neurite development and promotes neuronal death via lowering BDNF mRNA and protein levels (Li et al., 2010). Moreover, accumulated phenylalanine interferes with brain development, causing microcephaly, intellectual incapacity, and behavioral issues. Neuronal cell loss, white matter abnormalities, dendritic simplicity, and synaptic density decrease may cause these problems. However, future research is needed to understand the phenylalanine-BDNF connection (Huttenlocher, 2000; Li et al., 2010).

SBH as a possible neuroprotective agent and the potential mechanism

SBH consists ten-fold higher concentration of polyphenolic when compared to other honey (Mustafa et al., 2018). Polyphenolic substances including ferulic acid, luteolin, caffeic acid, isoflavones, and flavone can increase the survival, growth, number, and size of neuronal cells (Lin et al., 2010; Yabe et al., 2010; Tangsaengvit et al., 2013; Santos, 2014; Zaidi et al., 2019; Yin et al., 2022). Moreover, other compounds such as genistein, quercetin, liquidity, isorhamnetin, and resveratrol, neurotrophin (nerve growth factor and BDNF) can also help neurites grow (Chen et al., 2009; Nakajima et al., 2011; Xu et al., 2012; Zhang et al., 2012; Karimipour et al., 2019). Other phenolic compounds, like flavonoids (luteolin, daidzein, puerarin, hesperidin) and flavonols (kaempferol, quercetin, and isorhamnetin), can increase the expression of neuron differentiation markers, like neurofilaments light subunit, synaptophysin, and synapsin (Wang et al., 2008; Lin et al., 2010; Xu et al., 2012; Karimipour et al., 2019).

Neurotrophins (NGF, BDNF, NT3, and NT4) and bioactive compounds that activate neurotrophin receptors may be able to treat neurodegenerative and neurological diseases (Xiao and Le, 2016; Machaalani and Chen, 2018). Flavones promote TrkB dimerization and tyrosine phosphorylation to imitate neurotrophin’s binding capacity (Jang et al., 2010; Gupta et al., 2013; Wurzelmann et al., 2017; Paul et al., 2021). In addition, it can stimulate downstream pathways like BDNF. For example, SBH (H.itama) enhances spatial memory by acting on BDNF and inositol tri-phosphate (Mustafa et al., 2019). The possible role of SBH works through BDNF and inositol triphosphate to inhibit NF-ĸB and mitogen-activated protein kinase (MAPK), which supressing inflammatory factors (TNF-α and IL-6) (Arshad et al., 2020).

BDNF/TrkB and the associated signaling pathways

Neurotrophins are a polypeptide growth factor family that bind to specific tyrosine kinases known as Trk receptors. The dimerization of ligand-initiated receptors and phosphorylation of tyrosine residue in the intracellular Trk domains will start the transduction of the BDNF signal (Segal and Greenberg, 1996; Huang and Reichardt, 2001; Yoshii and Constantine-Paton, 2010). BDNF is synthesized and released in an activity-dependent manner, which will bind specifically to TrkB receptors (Klein et al., 1993; Lu, 2003). The neurotrophin binding to the Trk receptor subsequently activates pathways for development and functioning related to the nervous system (Soppet et al., 1991). Neurotrophin brain-derived neurotrophic factor (BDNF) binds to high affinity to its primary receptor, TrkB. Subsequently, trigger intracellular signaling pathway phospholipase C gamma (PLC γ), phosphatidylinositol 3-kinase (PI3K), and mitogen-activated protein kinase/extracellular signal-regulated kinases (MAPK/ERK; Figure 1; Segal and Greenberg, 1996; Park and Poo, 2013).

Figure 1.

Figure 1

BDNF/TrkB signaling pathways and association to LTP induction and neuronal excitability [CaMKII, Ca2+/calmodulin-dependent protein kinase II, NMDAR, N-methyl-D-aspartate receptor, AMPAR. α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor, PKC, protein kinase C, TRPC 3, transient receptor potential-3 channels, IP3, inositol 1,4,5-triphosphate, Shc, src homology 2 domain-containing adapter protein, MAPK/ERK, mitogen-activated protein kinase/ extracellular signal-regulated kinases, PLC γ, phospholipase C gamma, PI3K, phosphatidylinositol 3-kinase, DAG, diacylglycerol, TrkB, tyrosine receptor kinase B (Murray and Holmes, 2011)].

These downstream signaling pathways are essential in neurogenesis and synaptic plasticity (Tanaka et al., 1997; Mathew and Hablitz, 2008; Yoshii and Constantine-Paton, 2014). ERK is essential for neurogenesis and promotes survival by activating genes that promote survival and suppressing proteins that promote apoptosis (Bonni et al., 1999; Barnabé-Heider and Miller, 2003). Furthermore, MAPK/ERK pathway is essential for regulating protein synthesis-dependent plasticity by upregulating the phosphorylation of ribosomal protein and translation factors (Kelleher et al., 2004; Klann and Dever, 2004). Meanwhile, the TrkB-PI3K-Akt pathway is essential in maintaining synaptic plasticity through protein translation and transportation of synaptic proteins (Sarbassov et al., 2005). This pathway, TrkB-PI3K-Akt acting via the mammalian rapamycin target (mTOR), involves protein translation (Sarbassov et al., 2005). Besides, the PI3K-Akt signaling pathway also involves the regulation of synaptic transportation (Yoshii and Constantine-Paton, 2007).

BDNF is essential in trafficking the N-methyl-D-aspartate (NMDA) receptor subunits to the membrane increasing calcium influx and additional BDNF release (Figure 1). The induction of early long-term potentiation, E-LTP, requires both post-synaptic calcium ion (Ca2+) influx and activation of the NMDAR complex (Hartmann et al., 2001; Walz et al., 2006). Backpropagating action potentials also influence calcium influx by opening voltage-dependent calcium channels. Sufficient calcium building up locally will lead to postsynaptic BDNF release, thus cause increased presynaptic vesicle cycling. These pathways support synaptic plasticity and LTP (Sabatini et al., 2001; Waters et al., 2005). Moreover, TrkB receptors interact with glutamate receptors due to postsynaptic activation. Once the membrane has sufficiently depolarized, it causes the removal of the magnesium ion (Mg2+) block on NMDAR channels, and L-glutamate binding allows NMDAR to open, which triggers Ca2+ influx (Bliss and Collingridge, 1993; Lynch, 2004).

Furthermore, BDNF–TrkB triggers cation influx through canonical transient receptor potential-3 channels (TRPC 3). Activating TrkB and PLC depletes IP3-dependent Ca2+ stores, triggering Ca2+ and sodium ion (Na+) influx through TRPC3 and perhaps enhancing synaptic Ca2+ entry via voltage-gated channels or NMDARs (Li et al., 1999; Amaral and Pozzo-Miller, 2007). As a result, transient activation of numerous enzymes is necessary to induce E-LTP due to the high spike in intracellular Ca2+ concentration and encouragement of Ca2+ inflow (Sweatt, 1999). For instance, protein kinase C (PKC) and Ca2+/calmodulin-dependent protein kinase II (CaMKII). E-LTP induction also needs the transient activation of CaMKII and PKC, and continuous activation is required to maintain E-LTP (Li et al., 1999; Amaral and Pozzo-Miller, 2007).

CaMKII and PKC become independently active during E-LTP’s maintenance phase (Sweatt, 1999). This causes the phosphorylation of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors, enhancing their activity and trafficking to and from the synaptic plasma membrane and insertion of the GluR1 subunit into the postsynaptic membrane (Malenka, 2003; Malenka and Bear, 2004; Shepherd and Huganir, 2007). TrkB and the release of Ca2+ from internal IP3-sensitive storage are likely implicated in the mechanisms by which BDNF increased the synaptic delivery of glutamate subunits, GluR1 (Reichardt, 2006; Lin et al., 2009). Studies have reported that LTP depends on AMPA receptor trafficking to the synaptic plasma membrane. Late-long-term potentiation (L-LTP) generated during E-LTP persists for an extended period, up to hours or days, and involves gene transcription and protein synthesis. Due to this, L-LTP induction is a good candidate for long-term molecular memory (LTM; Morris et al., 2003; Sutton and Schuman, 2006; Whitlock et al., 2006; Zhou et al., 2006).

BDNF/TrkB signaling association in synaptic plasticity

In the hippocampus, LTP is characterized by an activity-dependent change in synaptic strength and cellular processes that underlie learning and memory (Bliss and Collingridge, 1993). Various studies have suggested that the synaptic changes triggered by LTP are critical for memory formation and consolidation of long-term memories (Bliss and Collingridge, 1993; Selcher et al., 2002). Modifications in the individual excitatory synaptic strength promote the refinement and information storage related to learning and memory. E-LTP will elevate the strength of synapses within a short period, while higher stimulation will last for a longer duration, also known as L-LTP (Huang and Kandel, 1994). Besides LTP, LTD is a type of activity-dependent synaptic weakening that lasts long. LTD is crucial in synaptic connectivity refinement throughout development (Dudek and Bear, 1993). LTD or depotentiation mechanisms might decrease hyperexcitability due to the similarities of low-frequency stimulation patterns with LTD induction (Albensi et al., 2004).

Studies have demonstrated a high correlation between hippocampus neurogenesis and cognitive ability (Zhou et al., 2004). Improvement of learning and memory abilities are associated with increased neurogenesis and new neurons formed in the hippocampus during enrichment, which is critical for improving the ability to store new information in long-term memory (Bruel-Jungerman et al., 2005). BDNF–TrkB signaling action on the postsynaptic neuron is crucial for excitatory synaptic transmission and LTP induction (Yury et al., 2002). An increase in neuronal excitability will induce synaptic plasticity thus, enhance BDNF signaling. A study has suggested that BDNF–TrkB signaling triggers glutamate release and binds to postsynaptic receptors for LTP induction. The reduction or absence of BDNF and TrkB cause LTP inhibition and learning dysfunctionality (Korte et al., 1995; Figurov et al., 1996; Minichiello et al., 1999). Therefore, shows that BDNF is crucial in neurogenesis, axonal and dendritic sprouting and LTP via a TrkB-dependent manner (Patapoutian and Reichardt, 2001). However, this might cause neuronal hyperactivity, resulting in excitotoxicity (Patapoutian and Reichardt, 2001).

Studies have reported that NMDAR subunits, NR2A-NMDA receptor plays an essential role in long-term potential (LTP) production, and the NR2B-NMDA receptor plays a vital role in long-term depression (LTD) induction in the CA1 region of hippocampal brain region (Liu et al., 2004; Evans, 2008). A study has shown that the expression level of NMDA subunit receptor levels changes upon the application of BDNF. The expression level of NR1 and NR2A increase while NR2B decreases (Glazner and Mattson, 2000). Calcium ions released upon activation of NMDA receptors can cause necrosis (cell swelling) and decrease apoptosis (cell shrinkage and chromatin fragmentation; Farmer et al., 2004). These properties might be beneficial and harmful because they induce hyperexcitability in the dentate gyrus neuronal circuit, resulting in widespread excitotoxicity (Scharfman et al., 1999; Feng et al., 2003; Koyama et al., 2004). Dysfunctionality in excitatory neuronal networks might play a pivotal role in various diseases (Bliss and Collingridge, 1993). NMDA and AMPA receptors are involved in the induction of LTP and epileptogenesis (Liu et al., 2004; Evans, 2008).

BDNF release and Trk receptor activity trigger the development of hyperexcitable circuits, and synaptic plasticity and promote NMDA receptors in the exercise KA model (Koyama et al., 2004). The application of BDNF activates the sodium channel and triggers the influx of calcium ions. Therefore, resulting in postsynaptic neuron depolarization of dentate granule cells (Kafitz et al., 1999). High stimulation will trigger calcium ion influx via NMDA receptors activation, and AMPA receptors generate excitatory postsynaptic potentials, EPSC (Nowak et al., 1984; Malenka et al., 1988; Nicoll and Malenka, 1999). Both AMPA/ kainate receptor-mediated EPSCs are involved in moderating fast glutamatergic synaptic activity (Represa et al., 1987; Cossart et al., 2002). Besides, BDNF also facilitates excitatory synaptic transmission in the hippocampal CA1 region (Kang and Schuman, 1995). However, the excessive calcium ion influx can lead to glutamate excitotoxicity via NMDA receptors, which contribute to brain insults such as anoxia, ischemia, and seizure, thus resulting in neuronal damage (Meldrum, 1993; Murray and Holmes, 2011).

BDNF/TrkB signaling association in neurological disorder

Activation of the TrkB receptor also plays a pivotal role in the central nervous system in promoting excitatory glutamate-mediated synaptic transmission and inhibitory synaptic transmission. BDNF and its receptor, TrkB, are highly expressed in neuronal and astrocytes in several brain regions, including the hippocampus and cerebral cortex (Croll et al., 1999; He et al., 2004; Holt et al., 2019). Various studies have shown that BDNF plays a vital role in exerting neuroprotective effects against glutamate toxicity (Almeida et al., 2005; Jiang et al., 2005). The pattern of BDNF expression observed in this study was similar to the pattern shown in various neurodegenerative models. BDNF as a treatment application significantly reduces neuronal cell death in the neurotoxin-induced model via ERK-induced signaling pathways (Ventimiglia et al., 1995; Bogush et al., 2007). Therefore, it shows that BDNF might exert neuroprotective effects against neuronal insults.

Studies on the relationship mechanism between neuronal plasticity and seizures were usually associated with the hippocampus brain region (Chen et al., 2016). Studies have suggested that the elevated neurotrophic factors expression level following seizure induction might be associated with maintaining long-lasting structural and functional changes contributing to epileptogenesis (Merlio et al., 1993; Conner et al., 1997). BDNF is crucial in developing and maintaining neuronal populations within the central nervous system BDNF can be found in neurons, astrocytes, and microglia, which have a pivotal role in neuronal excitability in various conditions, including epilepsy (Parpura and Zorec, 2010). BDNF expression level was upregulated in pyramidal neuronal cells in the hippocampal region, amygdala, entorhinal cortex, and piriform cortex (Conner et al., 1997). The principal neurons in the hippocampus are excitatory neurons that utilize glutamate receptors to generate fast-acting postsynaptic currents (EPSCs; Yehezkel, 2008). These brain regions are the main areas affected during epilepsy (Binder et al., 2001).

The expression level of BDNF changes during neurotoxicity and in neurodegenerative diseases (Ballarín et al., 1991; Tanila, 2017). Neurotoxin-induced neurodegenerative model induces robust upregulation of BDNF expression levels (Ballarín et al., 1991; Sathanoori et al., 2004). The upregulation of BDNF expression level induces glutamatergic transmission, and limbic circuit neural activity cause potentiation induction (Patterson et al., 1992). BDNF also triggers axonal growth, promotes basal dendritic granule cells formation, facilitates dendritic spine morphological changes, and triggers neurogenesis in the adult brain, such as the dentate gyrus (Lowenstein and Arsenault, 1996; Murphy et al., 1998; Wilson Horch et al., 1999; Danzer et al., 2002; Lee et al., 2002; Tyler and Pozzo-Miller, 2003). The study suggested that the growth-associated activity induced by BDNF might contribute to excitability changes, epileptogenesis, and chronic epilepsy (Lähteinen et al., 2004).

Robust upregulation of BDNF expression was observed after seizures regardless of the method applied (Bengzon et al., 1993; Humpel et al., 1993). Activity-dependent BDNF release and Trk receptor activity cause abnormal mossy fiber sprouting resulting in hyperexcitable circuits activity (Koyama et al., 2004). The study has shown that BDNF does not increase severity in the KA-induced model but the severity of injury in pyramidal neurons of the CA3 hippocampal region. Brain insult, hypoxia, and seizure cause the expression level of BDNF mRNA level to increase in dentate granule cells, promoting BDNF release from mossy fiber and anterograde transport. Therefore, it resulted in the activation of TrKB receptors in hilus and CA3 stratum lucidum. The study explains that vital excitatory mossy fiber input into CA3 pyramidal cells might primarily promote epileptogenesis through BDNF (Binder et al., 2001).

Conclusion

The bioactive compounds in SBH contribute to antioxidant and anti-inflammatory effects, which is crucial to combat various neurological disorders. These beneficial effects might contribute to the neuroprotective effects by preventing further damage to the central nervous system. Studies have suggested that flavonoids and phenolic compounds present in honey might potentially reduce or prevent these behavioral and cognitive abnormalities caused by oxidative stress, protein processing, neurotrophic signaling, synaptic dysfunction, inflammation, and cell death. The flavones compound can mimic the ability of BDNF on the downstream pathways that is essential in neurogenesis and synaptic plasticity. Moreover, before considering phenylalanine compounds as treatments for various neurological-related disorders, more studies are required. Studies are needed to learn more about the effects of neurotrophic factors and how they work at the molecular level. These results could help build better treatments for neurological disorders and dysfunctions. More investigation is required to fully understand the bioactive substances, molecular processes, and essential elements of SBH that influence the nootropic activity to build this new potential quality standard. This entails developing new delivery methods, such as nanoparticles or other formulations that promote brain uptake, then assessed in the same model to determine the most effective.

Author contributions

All authors listed have made a substantial, direct, and intellectual contribution to the work and approved it for publication.

Funding

This article is funded by the Ministry of Higher Education Malaysia for Fundamental Research Grant Scheme with Project Code: FRGS/1/2021/SKK06/USM/02/13 and Universiti Sains Malaysia RU Top-down 2020; 1001/PPSP/8070015.

Conflict of interest

The reviewer SLT declared a past co-authorship with the author SNHH to the handling editor. The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

References

  1. Abbott N. J. (2000). Inflammatory mediators and modulation of blood-brain barrier permeability. Cell. Mol. Neurobiol. 20, 131–147. doi: 10.1023/A:1007074420772 [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Abd Al Haleem E. N., Ahmed H. I., El-Naga R. N. (2021). Lycopene and Chrysin through mitigation of Neuroinflammation and oxidative stress exerted antidepressant effects in clonidine-induced depression-like behavior in rats. J. Diet. Suppl. 11, 1–20. doi: 10.1080/19390211.2021.1988797 [DOI] [PubMed] [Google Scholar]
  3. Abd Aziz C. B., Ahmad Suhaimi S. Q., Hasim H., Ahmad A. H., Long I., Zakaria R. (2019). Effects of Tualang honey in modulating nociceptive responses at the spinal cord in offspring of prenatally stressed rats. J. Integr. Med. 17, 66–70. doi: 10.1016/j.joim.2018.12.002 [DOI] [PubMed] [Google Scholar]
  4. Abd Jalil M. A., Kasmuri A. R., Hadi H. (2017). Stingless bee honey, the natural wound healer: a review. Skin Pharmacol. Physiol. 30, 66–75. doi: 10.1159/000458416, PMID: [DOI] [PubMed] [Google Scholar]
  5. Abdul Malik N., Mohamed M., Mustafa M. Z., Zainuddin A. (2020). In vitro modulation of extracellular matrix genes by stingless bee honey in cellular aging of human dermal fibroblast cells. J. Food Biochem. 44:e13098. doi: 10.1111/jfbc.13098 [DOI] [PubMed] [Google Scholar]
  6. Abdulmajeed W. I., Sulieman H. B., Zubayr M. O., Imam A., Amin A., Biliaminu S. A., et al. (2016). Honey prevents neurobehavioural deficit and oxidative stress induced by lead acetate exposure in male wistar rats-a preliminary study. Metab. Brain Dis. 31, 37–44. doi: 10.1007/s11011-015-9733-6 [DOI] [PubMed] [Google Scholar]
  7. Abu Bakar M. F., Sanusi S. B., Abu Bakar F. I., Cong O. J., Mian Z. (2017). Physicochemical and antioxidant potential of raw unprocessed honey from Malaysian stingless bees. Pak. J. Nutr. 16, 888–894. doi: 10.3923/pjn.2017.888.894 [DOI] [Google Scholar]
  8. Adeniyi I. A., Babalola K. T., Adekoya V. A., Oyebanjo O., Ajayi A. M., Onasanwo S. A. (2022). Neuropharmacological effects of honey in lipopolysaccharide-induced neuroinflammation, cognitive impairment, anxiety and motor impairment. Nutr. Neurosci. 26, 1–14. doi: 10.1080/1028415X.2022.2063578 [DOI] [PubMed] [Google Scholar]
  9. Ahmad F., Seerangan P., Mustafa M. Z., Osman Z. F., Abdullah J. M., Idris Z. (2019). Anti-Cancer properties of Heterotrigona itama sp. honey via induction of apoptosis in malignant glioma cells. Malays. J Med. Sci. 26, 30–39. doi: 10.21315/mjms2019.26.2.4, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ahmed H., Khan M. A., Ali Zaidi S. A., Muhammad S. (2021). In Silico and in vivo: Evaluating the therapeutic potential of Kaempferol, quercetin, and Catechin to treat chronic epilepsy in a rat model. Front. Bioeng. Biotechnol. 9:754952. doi: 10.3389/fbioe.2021.754952, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ahmed S., Othman N. H. (2013). Review of the medicinal effects of tualang honey and a comparison with manuka honey. Malays. J. Med. Sci. 20, 6–13. doi: 10.5539/jas.v9n13p3 [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Al Kafaween M. A., Hilmi A. B. M., Khan R. S., Bouacha M., Amonov M. (2019). Effect of Trigona honey on Escherichia coli cell culture growth: in vitro study. J. Apither. 5, 10–17. doi: 10.5455/ja.20190407083601 [DOI] [Google Scholar]
  13. Albensi B. C., Ata G., Schmidt E., Waterman J. D., Janigro D. (2004). Activation of long-term synaptic plasticity causes suppression of epileptiform activity in rat hippocampal slices. Brain Res. 998, 56–64. doi: 10.1016/j.brainres.2003.11.010, PMID: [DOI] [PubMed] [Google Scholar]
  14. Al-Hatamleh M. A. I., Boer J. C., Wilson K. L., Plebanski M., Mohamud R., Mustafa M. Z. (2020). Antioxidant-based medicinal properties of stingless bee products: recent Progress and future directions. Biomol. Ther. 10. doi: 10.3390/biom10060923, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Almeida R. D., Manadas B. J., Melo C. V., Gomes J. R., Mendes C. S., Grãos M. M., et al. (2005). Neuroprotection by BDNF against glutamate-induced apoptotic cell death is mediated by ERK and PI3-kinase pathways. Cell Death Differ. 12, 1329–1343. doi: 10.1038/sj.cdd.4401662, PMID: [DOI] [PubMed] [Google Scholar]
  16. Alvarez-Suarez J. M., Giampieri F., Brenciani A., Mazzoni L., Gasparrini M., González-Paramás A. M., et al. (2018). Apis mellifera vs Melipona beecheii Cuban polifloral honeys: a comparison based on their physicochemical parameters, chemical composition and biological properties. LWT 87, 272–279. doi: 10.1016/j.lwt.2017.08.079 [DOI] [Google Scholar]
  17. Amaral M. D., Pozzo-Miller L. (2007). TRPC3 channels are necessary for brain-derived neurotrophic factor to activate a nonselective cationic current and to induce dendritic spine formation. J. Neurosci. 27, 5179–5189. doi: 10.1523/JNEUROSCI.5499-06.2007 [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Anwar J., Spanevello R. M., Thomé G., Stefanello N., Schmatz R., Gutierres J., et al. (2012). Effects of caffeic acid on behavioral parameters and on the activity of acetylcholinesterase in different tissues from adult rats. Pharmacol. Biochem. Behav. 103, 386–394. doi: 10.1016/j.pbb.2012.09.006, PMID: [DOI] [PubMed] [Google Scholar]
  19. Arshad N., Lin T. S., Yahaya M. F. (2020). Stingless bee honey reduces anxiety and improves memory of the metabolic disease-induced rats. CNS Neurol. Disord. Drug Targets 19, 115–126. doi: 10.2174/1871527319666200117105133 [DOI] [PubMed] [Google Scholar]
  20. Arulselvan P., Fard M. T., Tan W. S., Gothai S., Fakurazi S., Norhaizan M. E., et al. (2016). Role of antioxidants and natural products in inflammation. Oxid. Med. Cell. Longev. 2016:5276130. doi: 10.1155/2016/5276130, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Ashrafi M. R., Shams S., Nouri M., Mohseni M., Shabanian R., Yekaninejad M. S., et al. (2007). A probable causative factor for an old problem: selenium and glutathione peroxidase appear to play important roles in epilepsy pathogenesis. Epilepsia 48, 1750–1755. doi: 10.1111/j.1528-1167.2007.01143.x, PMID: [DOI] [PubMed] [Google Scholar]
  22. Ávila S., Beux M. R., Ribani R. H., Zambiazi R. C. (2018). Stingless bee honey: quality parameters, bioactive compounds, health-promotion properties and modification detection strategies. Trends Food Sci. Technol. 81, 37–50. doi: 10.1016/j.tifs.2018.09.002 [DOI] [Google Scholar]
  23. Ávila S., Hornung P. S., Teixeira G. L., Malunga L. N., Apea-Bah F. B., Beux M. R., et al. (2019). Bioactive compounds and biological properties of Brazilian stingless bee honey have a strong relationship with the pollen floral origin. Food Res. Int. 123, 1–10. doi: 10.1016/j.foodres.2019.01.068, PMID: [DOI] [PubMed] [Google Scholar]
  24. Aziz M. S. A., Giribabu N., Rao P. V., Salleh N. (2017). Pancreatoprotective effects of Geniotrigona thoracica stingless bee honey in streptozotocin-nicotinamide-induced male diabetic rats. Biomed. Pharmacother. 89, 135–145. doi: 10.1016/j.biopha.2017.02.026, PMID: [DOI] [PubMed] [Google Scholar]
  25. Ballarín M., Ernfors P., Lindefors N., Persson H. (1991). Hippocampal damage and kainic acid injection induce a rapid increase in mRNA for BDNF and NGF in the rat brain. Exp. Neurol. 114, 35–43. doi: 10.1016/0014-4886(91)90082-N, PMID: [DOI] [PubMed] [Google Scholar]
  26. Barnabé-Heider F., Miller F. D. (2003). Endogenously produced neurotrophins regulate survival and differentiation of cortical progenitors via distinct signaling pathways. J. Neurosci. 23, 5149–5160. doi: 10.1523/JNEUROSCI.23-12-05149.2003, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Barros D., Amaral O. B., Izquierdo I., Geracitano L., do Carmo Bassols Raseira M., Henriques A. T., et al. (2006). Behavioral and genoprotective effects of Vaccinium berries intake in mice. Pharmacol. Biochem. Behav. 84, 229–234. doi: 10.1016/j.pbb.2006.05.001, PMID: [DOI] [PubMed] [Google Scholar]
  28. Bartelli B. F., Nogueira-Ferreira F. H. (2015). Pollination services provided by Melipona quadrifasciata Lepeletier (Hymenoptera: Meliponini) in greenhouses with Solanum lycopersicum L.(Solanaceae). Sociobiology 61, 510–516. doi: 10.13102/sociobiology.v61i4.510-516 [DOI] [Google Scholar]
  29. Bengzon J., Kokaia Z., Ernfors P., Kokaia M., Leanza G., Nilsson O. G., et al. (1993). Regulation of neurotrophin and traka, trkb and trkc tyrosine kinase receptor messenger RNA expression in kindling. Neuroscience 53, 433–446. doi: 10.1016/0306-4522(93)90207-V, PMID: [DOI] [PubMed] [Google Scholar]
  30. Beretta G., Granata P., Ferrero M., Orioli M., Maffei Facino R. (2005). Standardization of antioxidant properties of honey by a combination of spectrophotometric/fluorimetric assays and chemometrics. Anal. Chim. Acta 533, 185–191. doi: 10.1016/j.aca.2004.11.010 [DOI] [Google Scholar]
  31. Biluca F. C., Braghini F., Gonzaga L. V., Costa A. C. O., Fett R. (2016). Physicochemical profiles, minerals and bioactive compounds of stingless bee honey (Meliponinae). J. Food Compos. Anal. 50, 61–69. doi: 10.1016/j.jfca.2016.05.007 [DOI] [Google Scholar]
  32. Biluca F. C., da Silva B., Caon T., Mohr E. T. B., Vieira G. N., Gonzaga L. V., et al. (2020). Investigation of phenolic compounds, antioxidant and anti-inflammatory activities in stingless bee honey (Meliponinae). Food Res. Int. 129:108756. doi: 10.1016/j.foodres.2019.108756, PMID: [DOI] [PubMed] [Google Scholar]
  33. Binder D. K., Croll S. D., Gall C. M., Scharfman H. E. (2001). BDNF and epilepsy: too much of a good thing? Trends Neurosci. 24, 47–53. doi: 10.1016/s0166-2236(00)01682-9, PMID: [DOI] [PubMed] [Google Scholar]
  34. Binder D. K., Routbort M. J., McNamara J. O. (1999). Immunohistochemical evidence of seizure-induced activation of trk receptors in the mossy fiber pathway of adult rat hippocampus. J. Neurosci. 19, 4616–4626. doi: 10.1523/jneurosci.19-11-04616.1999 [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Bliss T. V. P., Collingridge G. L. (1993). A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361, 31–39. doi: 10.1038/361031a0 [DOI] [PubMed] [Google Scholar]
  36. Bogush A., Pedrini S., Pelta-Heller J., Chan T., Yang Q., Mao Z., et al. (2007). AKT and CDK5/p35 mediate brain-derived neurotrophic factor induction of DARPP-32 in medium size spiny neurons in vitro. J. Biol. Chem. 282, 7352–7359. doi: 10.1074/jbc.M606508200, PMID: [DOI] [PubMed] [Google Scholar]
  37. Bolaños J. P., Almeida A., Moncada S. (2010). Glycolysis: a bioenergetic or a survival pathway? Trends Biochem. Sci. 35, 145–149. doi: 10.1016/j.tibs.2009.10.006 [DOI] [PubMed] [Google Scholar]
  38. Bonni A., Brunet A., West A. E., Datta S. R., Takasu M. A., Greenberg M. E. (1999). Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and-independent mechanisms. Science 286, 1358–1362. doi: 10.1126/science.286.5443.1358, PMID: [DOI] [PubMed] [Google Scholar]
  39. Borsato D. M., Prudente A. S., Döll-Boscardin P. M., Borsato A. V., Luz C. F. P., Maia B. H. L. N. S., et al. (2014). Topical anti-inflammatory activity of a Monofloral honey of Mimosa scabrella provided by Melipona marginata during winter in southern Brazil. J. Med. Food 17, 817–825. doi: 10.1089/jmf.2013.0024, PMID: [DOI] [PubMed] [Google Scholar]
  40. Bruel-Jungerman E., Laroche S., Rampon C. (2005). New neurons in the dentate gyrus are involved in the expression of enhanced long-term memory following environmental enrichment. Eur. J. Neurosci. 21, 513–521. doi: 10.1111/j.1460-9568.2005.03875.x [DOI] [PubMed] [Google Scholar]
  41. Budin S. B., Jubaidi F. F., Mohd Noor Azam S. N. F., Mohamed Yusof N. L., Taib I. S., Mohamed J. (2017). Kelulut honey supplementation prevents sperm and testicular oxidative damage in streptozotocin-induced diabetic rats. Jurnal Teknologi 79, 89–95. doi: 10.11113/jt.v79.9674 [DOI] [Google Scholar]
  42. Cai M., Shin B. Y., Kim D. H., Kim J. M., Park S. J., Park C. S., et al. (2011). Neuroprotective effects of a traditional herbal prescription on transient cerebral global ischemia in gerbils. J. Ethnopharmacol. 138, 723–730. doi: 10.1016/j.jep.2011.10.016, PMID: [DOI] [PubMed] [Google Scholar]
  43. Carvalho C. A. L., Sodré G. S., Fonseca A. A. O., Alves R. M. O., Souza B. A., Clarton L. (2009). Physicochemical characteristics and sensory profile of honey samples from stingless bees (Apidae: Meliponinae) submitted to a dehumidification process. An. Acad. Bras. Cienc. 81, 143–149. doi: 10.1590/S0001-37652009000100015, PMID: [DOI] [PubMed] [Google Scholar]
  44. Chan B. K., Haron H., Talib R. A., Subramaniam P. (2017). Physical properties, antioxidant content and anti-oxidative activities of Malaysian stingless kelulut (Trigona spp.) honey. J. Agric. Sci. 9, 32–40. doi: 10.5539/JAS.V9N13P32 [DOI] [Google Scholar]
  45. Chang S., Li X., Zheng Y., Shi H., Zhang D., Jing B., et al. (2022). Kaempferol exerts a neuroprotective effect to reduce neuropathic pain through TLR4/NF-ĸB signaling pathway. Phytother. Res. 36, 1678–1691. doi: 10.1002/ptr.7396, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Chaudhuri S., Banerjee A., Basu K., Sengupta B., Sengupta P. K. (2007). Interaction of flavonoids with red blood cell membrane lipids and proteins: antioxidant and antihemolytic effects. Int. J. Biol. Macromol. 41, 42–48. doi: 10.1016/j.ijbiomac.2006.12.003, PMID: [DOI] [PubMed] [Google Scholar]
  47. Chen N.-C., Chuang Y. C., Huang C. W., Lui C. C., Lee C. C., Hsu S. W., et al. (2016). Interictal serum brain-derived neurotrophic factor level reflects white matter integrity, epilepsy severity, and cognitive dysfunction in chronic temporal lobe epilepsy. Epilepsy Behav. 59, 147–154. doi: 10.1016/j.yebeh.2016.02.029, PMID: [DOI] [PubMed] [Google Scholar]
  48. Chen Z., Wang J. L., Liu R. T., Ren J. P., Wen L. Q., Chen X. J., et al. (2009). Liquiritin potentiate neurite outgrowth induced by nerve growth factor in PC12 cells. Cytotechnology 60, 125–132. doi: 10.1007/s10616-009-9226-8, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Chepulis L. M., Starkey N. J., Waas J. R., Molan P. C. (2009). The effects of long-term honey, sucrose or sugar-free diets on memory and anxiety in rats. Physiol. Behav. 97, 359–368. doi: 10.1016/j.physbeh.2009.03.001, PMID: [DOI] [PubMed] [Google Scholar]
  50. Chew C. Y., Chua L. S., Soontorngun N., Lee C. T. (2018). Discovering potential bioactive compounds from Tualang honey. Agric. Nat. Resour. 52, 361–365. doi: 10.1016/j.anres.2018.10.011 [DOI] [Google Scholar]
  51. Choi D. W. (1988). Glutamate neurotoxicity and diseases of the nervous system. Neuron 1, 623–634. [DOI] [PubMed] [Google Scholar]
  52. Chuttong B., Chanbang Y., Sringarm K., Burgett M. (2016). Physicochemical profiles of stingless bee (Apidae: Meliponini) honey from south East Asia (Thailand). Food Chem. 192, 149–155. doi: 10.1016/j.foodchem.2015.06.089, PMID: [DOI] [PubMed] [Google Scholar]
  53. Cianciosi D., Forbes-Hernández T., Afrin S., Gasparrini M., Reboredo-Rodriguez P., Manna P., et al. (2018). Phenolic compounds in honey and their associated health benefits: a review. Molecules 23. doi: 10.3390/molecules23092322, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Conner J. M., Lauterborn J. C., Yan Q., Gall C. M., Varon S. (1997). Distribution of brain-derived neurotrophic factor (BDNF) protein and mRNA in the Normal adult rat CNS: evidence for anterograde axonal transport. J. Neurosci. 17, 2295–2313. doi: 10.1523/JNEUROSCI.17-07-02295.1997, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Copmans D., Orellana-Paucar A. M., Steurs G., Zhang Y., Ny A., Foubert K., et al. (2018). Methylated flavonoids as anti-seizure agents: naringenin 4′, 7-dimethyl ether attenuates epileptic seizures in zebrafish and mouse models. Neurochem. Int. 112, 124–133. doi: 10.1016/j.neuint.2017.11.011, PMID: [DOI] [PubMed] [Google Scholar]
  56. Cossart R., Epsztein J., Tyzio R., Becq H., Hirsch J., Ben-Ari Y., et al. (2002). Quantal release of glutamate generates pure Kainate and mixed AMPA/Kainate EPSCs in hippocampal neurons. Neuron 35, 147–159. doi: 10.1016/S0896-6273(02)00753-5, PMID: [DOI] [PubMed] [Google Scholar]
  57. Crespo I., García-Mediavilla M. V., Almar M., González P., Tuñón M. J., Sánchez-Campos S., et al. (2008). Differential effects of dietary flavonoids on reactive oxygen and nitrogen species generation and changes in antioxidant enzyme expression induced by proinflammatory cytokines in Chang liver cells. Food Chem. Toxicol. 46, 1555–1569. doi: 10.1016/j.fct.2007.12.014, PMID: [DOI] [PubMed] [Google Scholar]
  58. Croll S. D., Suri C., Compton D. L., Simmons M. V., Yancopoulos G. D., Lindsay R. M., et al. (1999). Brain-derived neurotrophic factor transgenic mice exhibit passive avoidance deficits, increased seizure severity and in vitro hyperexcitability in the hippocampus and entorhinal cortex. Neuroscience 93, 1491–1506. doi: 10.1016/S0306-4522(99)00296-1, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. da Silva I. A. A., da Silva T. M. S., Camara C. A., Queiroz N., Magnani M., de Novais J. S., et al. (2013). Phenolic profile, antioxidant activity and palynological analysis of stingless bee honey from Amazonas, northern Brazil. Food Chem. 141, 3552–3558. doi: 10.1016/j.foodchem.2013.06.072, PMID: [DOI] [PubMed] [Google Scholar]
  60. Dajas F., Rivera-Megret F., Blasina F., Arredondo F., Abin-Carriquiry J. A., Costa G., et al. (2003). Neuroprotection by flavonoids. Braz. J. Med. Biol. Res. 36, 1613–1620. doi: 10.1590/S0100-879X2003001200002 [DOI] [PubMed] [Google Scholar]
  61. Dan Dunn J., Alvarez L. A. J., Zhang X., Soldati T. (2015). Reactive oxygen species and mitochondria: a nexus of cellular homeostasis. Redox Biol. 6, 472–485. doi: 10.1016/j.redox.2015.09.005, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Danzer S. C., Crooks K. R. C., Lo D. C., McNamara J. O. (2002). Increased expression of brain-derived neurotrophic factor induces formation of basal dendrites and axonal branching in dentate granule cells in hippocampal explant cultures. J. Neurosci. 22, 9754–9763. doi: 10.1523/JNEUROSCI.22-22-09754.2002, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. David Y., Cacheaux L. P., Ivens S., Lapilover E., Heinemann U., Kaufer D., et al. (2009). Astrocytic potassium and glutamate buffering controls synaptic responses in a frequency-dependent manner. Epilepsia 50, 10588–10599. doi: 10.1523/JNEUROSCI.2323-09.2009 [DOI] [Google Scholar]
  64. de Almeida-Muradian L. B., Stramm K. M., Horita A., Barth O. M., da Silva de Freitas A., Estevinho L. M. (2013). Comparative study of the physicochemical and palynological characteristics of honey from M elipona subnitida and a pis mellifera. Int. J. Food Sci. Technol. 48, 1698–1706. doi: 10.1111/ijfs.12140 [DOI] [Google Scholar]
  65. de Oliveira Cruz D., de Oliveira Campos A. (2009). Polinização por abelhas em cultivos protegidos. Curr. Agric. Sci. Technol. 15, 5–10. Available at: https://periodicos.ufpel.edu.br/ojs2/index.php/CAST/article/view/1979 [Google Scholar]
  66. de Oliveira R. G., Luna A. C., Freitas L. S., Araújo E. D. (2017). Screening for quality indicators and phenolic compounds of biotechnological interest in honey samples from six species of stingless bees (Hymenoptera: Apidae). Food Sci. Technol. 37, 552–557. doi: 10.1590/1678-457X.25716 [DOI] [Google Scholar]
  67. de Oliveira Neto E. A., Santos D. D. C. (2011). Physical-chemical analysis of honeys from Africanized and native bees. Rev. Inst. Adolfo Lutz 70, 132–138. doi: 10.53393/rial.2011.v70.32562 [DOI] [Google Scholar]
  68. de Sousa J. M. B. (2016). Sugar profile, physicochemical and sensory aspects of monofloral honeys produced by different stingless bee species in Brazilian semi-arid region. LWT Food Sci. Technol. 65, 645–651. doi: 10.1016/j.lwt.2015.08.058 [DOI] [Google Scholar]
  69. Do Nascimento A. S., Marchini L., Carvalho C., Araújo D., Olinda R., Silveira T. (2015). Physical-chemical parameters of honey of stingless bee (Hymenoptera: Apidae). Am. Chem. Sci. J. 7, 139–149. doi: 10.9734/ACSJ/2015/17547 [DOI] [Google Scholar]
  70. Dudek S. M., Bear M. F. (1993). Bidirectional long-term modification of synaptic effectiveness in the adult and immature hippocampus. J. Neurosci. 13, 2910–2918. doi: 10.1523/JNEUROSCI.13-07-02910.1993 [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. Dugan L. L., Sensi S. L., Canzoniero L. M., Handran S. D., Rothman S. M., Lin T. S., et al. (1995). Mitochondrial production of reactive oxygen species in cortical neurons following exposure to N-methyl-D-aspartate. J. Neurosci. 15, 6377–6388. doi: 10.1523/JNEUROSCI.15-10-06377.1995, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Engwa G. A. (2018). Free radicals and the role of plant phytochemicals as antioxidants against oxidative stress-related diseases. Phytochem. Source Antioxidants Role Dis. Prev. 7, 49–74. doi: 10.5772/intechopen.76719 [DOI] [Google Scholar]
  73. Evans G. L. (2008). The Induction of Long-Term Potentiation Attenuates Kainic Acid-Induced Excitotoxicity. Vancouver, BC: University of British Columbia. [Google Scholar]
  74. Farmer J., Zhao X., van Praag H., Wodtke K., Gage F. H., Christie B. R. (2004). Effects of voluntary exercise on synaptic plasticity and gene expression in the dentate gyrus of adult male Sprague–dawley rats in vivo. Neuroscience 124, 71–79. doi: 10.1016/j.neuroscience.2003.09.029, PMID: [DOI] [PubMed] [Google Scholar]
  75. Fatima I. J., Mohd Hilmi A. B., Salwani I., Lavaniya M. (2018). Physicochemical characteristics of Malaysian stingless bee honey from trigona species, IIUM Med. J. Malays. 17, 187–191. doi: 10.31436/imjm.v17i1.1030 [DOI] [Google Scholar]
  76. Feng L., Molnár P., Nadler J. V. (2003). Short-term frequency-dependent plasticity at recurrent mossy Fiber synapses of the epileptic brain. J. Neurosci. 23, 5381–5390. doi: 10.1523/JNEUROSCI.23-12-05381.2003, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
  77. Ferguson L. R., Zhu S., Harris P. J. (2005). Antioxidant and antigenotoxic effects of plant cell wall hydroxycinnamic acids in cultured HT-29 cells. Mol. Nutr. Food Res. 49, 585–593. doi: 10.1002/mnfr.200500014, PMID: [DOI] [PubMed] [Google Scholar]
  78. Ferreres F., Andrade P., Tomás-Barberán F. A. (1994). Flavonoids from Portuguese heather honey. Z. Lebensm. Unters. Forsch. 199, 32–37. doi: 10.1007/BF01192949 [DOI] [Google Scholar]
  79. Figurov A., Pozzo-Miller L. D., Olafsson P., Wang T., Lu B. (1996). Regulation of synaptic responses to high-frequency stimulation and LTP by neurotrophins in the hippocampus. Nature 381, 706–709. doi: 10.1038/381706a0, PMID: [DOI] [PubMed] [Google Scholar]
  80. Gandhi S., Abramov A. Y. (2012). Mechanism of oxidative stress in neurodegeneration. Oxid. Med. Cell. Longev. 2012:428010. doi: 10.1155/2012/428010, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
  81. Gao J., Chi Z. F., Liu X. W., Shan P. Y., Wang R. (2007). Mitochondrial dysfunction and ultrastructural damage in the hippocampus of pilocarpine-induced epileptic rat. Neurosci. Lett. 411, 152–157. doi: 10.1016/j.neulet.2006.10.022, PMID: [DOI] [PubMed] [Google Scholar]
  82. Gibellini L., Bianchini E., de Biasi S., Nasi M., Cossarizza A., Pinti M. (2015). (2015) ‘natural compounds modulating mitochondrial functions’. Evid. Based Complement. Alternat. Med. 2015, 1–13. doi: 10.1155/2015/527209, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
  83. Glazner G. W., Mattson M. P. (2000). Differential effects of BDNF, ADNF9, and TNFα on levels of NMDA receptor subunits, calcium homeostasis, and neuronal vulnerability to Excitotoxicity. Exp. Neurol. 161, 442–452. doi: 10.1006/exnr.1999.7242 [DOI] [PubMed] [Google Scholar]
  84. Gomes S., Dias L. G., Moreira L. L., Rodrigues P., Estevinho L. (2010). Physicochemical, microbiological and antimicrobial properties of commercial honeys from Portugal. Food Chem. Toxicol. 48, 544–548. doi: 10.1016/j.fct.2009.11.029, PMID: [DOI] [PubMed] [Google Scholar]
  85. González-Gallego J., García-Mediavilla M. V., Sánchez-Campos S., Tuñón M. J. (2014). “Chapter 32—anti-inflammatory and immunomodulatory properties of dietary flavonoids” in Polyphenols in Human Health and Disease. eds. Watson R. R., Preedy V. R., Zibadi S. (San Diego, CA: Academic Press; ), 435–452. [Google Scholar]
  86. Grüter C. (2020). Stingless Bees, Cham, Switzerland: Springer International Publishing. [Google Scholar]
  87. Gupta V. K., You Y., Li J. C., Klistorner A., Graham S. L. (2013). Protective effects of 7, 8-dihydroxyflavone on retinal ganglion and RGC-5 cells against excitotoxic and oxidative stress. J. Mol. Neurosci. 49, 96–104. doi: 10.1007/s12031-012-9899-x, PMID: [DOI] [PubMed] [Google Scholar]
  88. Ha M. C., Tadi P., Ciofoaia G. A. (2019). Anterior Cerebral Artery Stroke. Treasure Island (FL): StatPearls Publishing. Available at: https://www.ncbi.nlm.nih.gov/books/NBK537333/ [PubMed] [Google Scholar]
  89. Halliwell B. (1992). Reactive oxygen species and the central nervous system. J. Neurochem. 59, 1609–1623. doi: 10.1111/j.1471-4159.1992.tb10990.x [DOI] [PubMed] [Google Scholar]
  90. Halliwell B. (1999). Antioxidant defence mechanisms: from the beginning to the end (of the beginning). Free Radic. Res. 31, 261–272. doi: 10.1080/10715769900300841, PMID: [DOI] [PubMed] [Google Scholar]
  91. Han J.-Y., Ahn S. Y., Kim C. S., Yoo S. K., Kim S. K., Kim H. C., et al. (2012). Protection of apigenin against kainate-induced excitotoxicity by anti-oxidative effects. Biol. Pharm. Bull. 35, 1440–1446. doi: 10.1248/bpb.b110686, PMID: [DOI] [PubMed] [Google Scholar]
  92. Hartmann M., Heumann R., Lessmann V. (2001). Synaptic secretion of BDNF after high-frequency stimulation of glutamatergic synapses. EMBO J. 20, 5887–5897. doi: 10.1093/emboj/20.21.5887, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
  93. Hazirah H., Yasmin A. M., Norwahidah A. (2019). Antioxidant properties of stingless bee honey and its effect on the viability of lymphoblastoid cell line. Med. Health 14, 91–105. doi: 10.17576/MH.2019.1401.08 [DOI] [Google Scholar]
  94. He X.-P., Kotloski R., Nef S., Luikart B. W., Parada L. F., McNamara J. O. (2004). Conditional deletion of TrkB but not BDNF prevents Epileptogenesis in the kindling model. Neuron 43, 31–42. doi: 10.1016/j.neuron.2004.06.019, PMID: [DOI] [PubMed] [Google Scholar]
  95. Heinemann U. W. E., Kaufer D., Friedman A. (2012). Blood-brain barrier dysfunction, TGFβ signaling, and astrocyte dysfunction in epilepsy. Glia 60, 1251–1257. doi: 10.1002/glia.22311, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
  96. Holt L. M., Hernandez R. D., Pacheco N. L., Torres Ceja B., Hossain M., Olsen M. L. (2019). Astrocyte morphogenesis is dependent on BDNF signaling via astrocytic TrkB.T1. eLife 8:e44667. doi: 10.7554/eLife.44667, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
  97. Hong S.-Y., Jeong W.-S., Jun M. (2012). Protective effects of the key compounds isolated from Corni fructus against β-amyloid-induced neurotoxicity in PC12 cells. Molecules 17, 10831–10845. doi: 10.3390/molecules170910831, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
  98. Hossen M. S., Ali M. Y., Jahurul M. H. A., Abdel-Daim M. M., Gan S. H., Khalil M. I. (2017). Beneficial roles of honey polyphenols against some human degenerative diseases: a review. Pharmacol. Rep. 69, 1194–1205. doi: 10.1016/j.pharep.2017.07.002, PMID: [DOI] [PubMed] [Google Scholar]
  99. Hou Y., Aboukhatwa M. A., Lei D. L., Manaye K., Khan I., Luo Y. (2010). Anti-depressant natural flavonols modulate BDNF and beta amyloid in neurons and hippocampus of double TgAD mice. Neuropharmacology 58, 911–920. doi: 10.1016/j.neuropharm.2009.11.002, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
  100. Hu P., Wang M., Chen W. H., Liu J., Chen L., Yin S. T., et al. (2008). Quercetin relieves chronic lead exposure-induced impairment of synaptic plasticity in rat dentate gyrus in vivo. Naunyn Schmiedeberg's Arch. Pharmacol. 378, 43–51. doi: 10.1007/s00210-008-0301-z, PMID: [DOI] [PubMed] [Google Scholar]
  101. Huang Y. Y., Kandel E. R. (1994). Recruitment of long-lasting and protein kinase A-dependent long-term potentiation in the CA1 region of hippocampus requires repeated tetanization. Learn. Memory 1, 74–82. doi: 10.1101/lm.1.1.74, PMID: [DOI] [PubMed] [Google Scholar]
  102. Huang E. J., Reichardt L. F. (2001). Neurotrophins: roles in neuronal development and function. Annu. Rev. Neurosci. 24, 677–736. doi: 10.1146/annurev.neuro.24.1.677, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
  103. Humpel C., Wetmore C., Olson L. (1993). Regulation of brain-derived neurotrophic factor messenger RNA and protein at the cellular level in pentylenetetrazol-induced epileptic seizures. Neuroscience 53, 909–918. doi: 10.1016/0306-4522(93)90476-V, PMID: [DOI] [PubMed] [Google Scholar]
  104. Huttenlocher P. R. (2000). The neuropathology of phenylketonuria: human and animal studies. Eur. J. Pediatr. 159, S102–S106. doi: 10.1007/PL00014371, PMID: [DOI] [PubMed] [Google Scholar]
  105. Iglesias A., Feás X., Rodrigues S., Seijas J. A., Vázquez-Tato M. P., Dias L. G., et al. (2012). Comprehensive study of honey with protected denomination of origin and contribution to the enhancement of legal specifications. Molecules 17, 8561–8577. doi: 10.3390/molecules17078561, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
  106. Ismail N. I., Abdul Kadir M. R., Mahmood N. H., Singh O. P., Iqbal N., Zulkifli R. M. (2016). Apini and Meliponini foraging activities influence the phenolic content of different types of Malaysian honey. J. Apic. Res. 55, 137–150. doi: 10.1080/00218839.2016.1207388 [DOI] [Google Scholar]
  107. Ismail N. I., Kadir M. R. A., Zulkifli R. M., Mohamed M. (2021). Comparison of physicochemical, total protein and antioxidant profiles between Malaysian apis and trigona honeys. Malaysian J. Anal. Sci. 25, 243–256. [Google Scholar]
  108. Jafari A., Babaei P., Rohampour K., Rashtiani S. (2022). The effect of Kaempferol on autophagy and Nrf-2 Signaling in a rat model of Aβ1-42-induced Alzheimer’s disease TT. Casp. J. Neurol. Sci. 8, 7–16. doi: 10.32598/CJNS.8.28.179.2 [DOI] [Google Scholar]
  109. Jang S.-W., Liu X., Yepes M., Shepherd K. R., Miller G. W., Liu Y., et al. (2010). A selective TrkB agonist with potent neurotrophic activities by 7,8-dihydroxyflavone. Proc. Natl. Acad. Sci. U. S. A. 107, 2687–2692. doi: 10.1073/pnas.0913572107, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
  110. Jellinger K. A. (2003). General aspects of neurodegeneration. J. Neural Trans. Suppl. 65, 101–144. doi: 10.1007/978-3-7091-0643-3_7 [DOI] [PubMed] [Google Scholar]
  111. Jiang W., Li B., Chen Y., Gao S. (2017). The toxic influence of dibromoacetic acid on the hippocampus and pre-frontal cortex of rat: involvement of neuroinflammation response and oxidative stress. Metab. Brain Dis. 32, 2009–2019. doi: 10.1007/s11011-017-0095-0, PMID: [DOI] [PubMed] [Google Scholar]
  112. Jiang X., Tian F., Mearow K., Okagaki P., Lipsky R. H., Marini A. M. (2005). The excitoprotective effect of N-methyl-d-aspartate receptors is mediated by a brain-derived neurotrophic factor autocrine loop in cultured hippocampal neurons. J. Neurochem. 94, 713–722. doi: 10.1111/j.1471-4159.2005.03200.x, PMID: [DOI] [PubMed] [Google Scholar]
  113. Kafitz K. W., Rose C. R., Thoenen H., Konnerth A. (1999). Neurotrophin-evoked rapid excitation through TrkB receptors. Nature 401, 918–921. doi: 10.1038/44847, PMID: [DOI] [PubMed] [Google Scholar]
  114. Kamaruzzaman M. A., Chin K.-Y., Mohd Ramli E. S. (2019). A review of potential beneficial effects of honey on bone health. Evid. Based Complement. Alternat. Med. 2019, 1–10. doi: 10.1155/2019/8543618, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
  115. Kang H., Schuman E. M. (1995). Long-lasting Neurotrophin-induced enhancement of synaptic transmission in the adult Hippocampus. Science 267, 1658–1662. doi: 10.1126/science.7886457, PMID: [DOI] [PubMed] [Google Scholar]
  116. Karimipour M., Rahbarghazi R., Tayefi H., Shimia M., Ghanadian M., Mahmoudi J., et al. (2019). Quercetin promotes learning and memory performance concomitantly with neural stem/progenitor cell proliferation and neurogenesis in the adult rat dentate gyrus. Int. J. Dev. Neurosci. 74, 18–26. doi: 10.1016/j.ijdevneu.2019.02.005, PMID: [DOI] [PubMed] [Google Scholar]
  117. Kek S. P., Chin N. L., Yusof Y. A., Tan S. W., Chua L. S. (2014). Total phenolic contents and colour intensity of Malaysian honeys from the Apis spp. and Trigona spp. bees. Agric. Agric. Sci. Procedia 2, 150–155. doi: 10.1016/j.aaspro.2014.11.022 [DOI] [Google Scholar]
  118. Kelleher R. J., Govindarajan A., Jung H. Y., Kang H., Tonegawa S. (2004). Translational control by MAPK Signaling in long-term synaptic plasticity and memory. Cells 116, 467–479. doi: 10.1016/S0092-8674(04)00115-1, PMID: [DOI] [PubMed] [Google Scholar]
  119. Kelly N., Farisya M. S. N., Kumara T. K., Marcela P. (2014). Species diversity and external Nest characteristics of stingless bees in Meliponiculture. Pertanika J. Trop. Agric. Sci. 37, 293–298. Available at: http://www.pertanika.upm.edu.my/ [Google Scholar]
  120. Khalil M. I., Alam N., Moniruzzaman M., Sulaiman S. A., Gan S. H. (2011b). Phenolic acid composition and antioxidant properties of Malaysian honeys. J. Food Sci. 76, C921–C928. doi: 10.1111/j.1750-3841.2011.02282.x [DOI] [PubMed] [Google Scholar]
  121. Khalil M. I., Mahaneem M., Jamalullail S. M. S., Alam N., Sulaiman S. A. (2011a). Evaluation of radical scavenging activity and colour intensity of nine Malaysian honeys of different origin. J. ApiProduct and ApiMed. Sci. 3, 4–11. doi: 10.3896/IBRA.4.03.1.02 [DOI] [Google Scholar]
  122. Khalil M. I., Sulaiman S. A., Gan S. H. (2010). High 5-hydroxymethylfurfural concentrations are found in Malaysian honey samples stored for more than one year. Food Chem. Toxicol. 48, 2388–2392. doi: 10.1016/j.fct.2010.05.076, PMID: [DOI] [PubMed] [Google Scholar]
  123. Kim S. Y., Buckwalter M., Soreq H., Vezzani A., Kaufer D. (2012). Blood–brain barrier dysfunction–induced inflammatory signaling in brain pathology and epileptogenesis. Epilepsia 53, 37–44. doi: 10.1111/j.1528-1167.2012.03701.x, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
  124. Kishore R. K., Halim A. S., Syazana M. S. N., Sirajudeen K. N. S. (2011). Tualang honey has higher phenolic content and greater radical scavenging activity compared with other honey sources. Nutr. Res. 31(4, 322–325. doi: 10.1016/j.nutres.2011.03.001 [DOI] [PubMed] [Google Scholar]
  125. Klann E., Dever T. E. (2004). Biochemical mechanisms for translational regulation in synaptic plasticity. Nat. Rev. Neurosci. 5, 931–942. doi: 10.1038/nrn1557 [DOI] [PubMed] [Google Scholar]
  126. Klein R., Smeyne R. J., Wurst W., Long L. K., Auerbach B. A., Joyner A. L., et al. (1993). Targeted disruption of the trkB neurotrophin receptor gene results in nervous system lesions and neonatal death. Cells 75, 113–122. doi: 10.1016/S0092-8674(05)80088-1, PMID: [DOI] [PubMed] [Google Scholar]
  127. Korte M., Carroll P., Wolf E., Brem G., Thoenen H., Bonhoeffer T. (1995). Hippocampal long-term potentiation is impaired in mice lacking brain-derived neurotrophic factor. Proc. Natl. Acad. Sci. 92, 8856–8860. doi: 10.1073/pnas.92.19.8856, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
  128. Koyama R., Yamada M. K., Fujisawa S., Katoh-Semba R., Matsuki N., Ikegaya Y. (2004). Brain-derived neurotrophic factor induces Hyperexcitable Reentrant circuits in the dentate gyrus. J. Neurosci. 24, 7215–7224. doi: 10.1523/JNEUROSCI.2045-04.2004, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
  129. Kulkarni S. R., Gurve S. S., Chormule A. J. (2017). Effect of different indigenous bee attractants in onion (Allium cepa L.) crop. Ann. Plant Prot. Sci. 25, 78–82. Available at: https://www.researchgate.net/publication/330442639_Effect_of_different_indigenous_bee_attractants_in_Onion_Allium_cepa_L_crop [Google Scholar]
  130. Kumar A., Sehgal N., Kumar P., Padi S. S. V., Naidu P. S. (2008). Protective effect of quercetin against ICV colchicine-induced cognitive dysfunctions and oxidative damage in rats. Phytother. Res. 22, 1563–1569. doi: 10.1002/ptr.2454, PMID: [DOI] [PubMed] [Google Scholar]
  131. Kwapong P. K., Ilechie A. A., Kusi R. (2013). Comparative antibacterial activity of stingless bee honey and standard antibiotics against common eye pathogens. J. Microbiol. Biotechnol. Res 3, 162–168. Available at: http://hdl.handle.net/123456789/8290 [Google Scholar]
  132. Kwon J. Y., Jeon M. T., Jung U. J., Kim D. W., Moon G. J., Kim S. R. (2019). Perspective: therapeutic potential of flavonoids as alternative medicines in epilepsy. Adv. Nutr. 10, 778–790. doi: 10.1093/advances/nmz047, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
  133. Lage L. G. A., Coelho L. L., Resende H. C., Tavares M. G., Campos L. A. O., Fernandes-Salomão T. M. (2012). Honey physicochemical properties of three species of the brazilian Melipona. An. Acad. Bras. Cienc. 84, 605–608. doi: 10.1590/S0001-37652012005000051, PMID: [DOI] [PubMed] [Google Scholar]
  134. Lagoa R., Graziani I., Lopez-Sanchez C., Garcia-Martinez V., Gutierrez-Merino C. (2011). Complex I and cytochrome c are molecular targets of flavonoids that inhibit hydrogen peroxide production by mitochondria. Biochim. Biophys. Acta (BBA)-Bioenerg. 1807, 1562–1572. doi: 10.1016/j.bbabio.2011.09.022, PMID: [DOI] [PubMed] [Google Scholar]
  135. Lähteinen S., Pitkänen A., Knuuttila J., Törönen P., Castrén E. (2004). Brain-derived neurotrophic factor signaling modifies hippocampal gene expression during epileptogenesis in transgenic mice. Eur. J. Neurosci. 19, 3245–3254. doi: 10.1111/j.0953-816X.2004.03440.x, PMID: [DOI] [PubMed] [Google Scholar]
  136. Lavinas F. C., Macedo E. H. B. C., Sá G. B. L., Amaral A. C. F., Silva J. R. A., Azevedo M. M. B., et al. (2019). Brazilian stingless bee propolis and geopropolis: promising sources of biologically active compounds. Rev. Bras 29, 389–399. doi: 10.1016/j.bjp.2018.11.007 [DOI] [Google Scholar]
  137. Lee J., Duan W., Mattson M. P. (2002). Evidence that brain-derived neurotrophic factor is required for basal neurogenesis and mediates, in part, the enhancement of neurogenesis by dietary restriction in the hippocampus of adult mice. J. Neurochem. 82, 1367–1375. doi: 10.1046/j.1471-4159.2002.01085.x [DOI] [PubMed] [Google Scholar]
  138. Leelaprakash G., Dass S. M. (2011). Invitro anti-inflammatory activity of methanol extract of Enicostemma axillare. Int. J. Drug Dev. Res. 3, 189–196. doi: 10.25004/ijpsdr.2017.090301 [DOI] [Google Scholar]
  139. Li D., Gu X., Lu L., Liang L. (2010). Effects of phenylalanine on the survival and neurite outgrowth of rat cortical neurons in primary cultures: possible involvement of brain-derived neurotrophic factor. Mol. Cell. Biochem. 339, 1–7. doi: 10.1007/s11010-009-0364-2, PMID: [DOI] [PubMed] [Google Scholar]
  140. Li H.-S., Xu X.-Z. S., Montell C. (1999). Activation of a TRPC3-dependent cation current through the neurotrophin BDNF. Neuron 24, 261–273. doi: 10.1016/S0896-6273(00)80838-7, PMID: [DOI] [PubMed] [Google Scholar]
  141. Li Q., Zhao H. F., Zhang Z. F., Liu Z. G., Pei X. R., Wang J. B., et al. (2009a). Long-term administration of green tea catechins prevents age-related spatial learning and memory decline in C57BL/6 J mice by regulating hippocampal cyclic amp-response element binding protein signaling cascade. Neuroscience 159, 1208–1215. doi: 10.1016/j.neuroscience.2009.02.008, PMID: [DOI] [PubMed] [Google Scholar]
  142. Li Q., Zhao H. F., Zhang Z. F., Liu Z. G., Pei X. R., Wang J. B., et al. (2009b). Long-term green tea catechin administration prevents spatial learning and memory impairment in senescence-accelerated mouse prone-8 mice by decreasing Aβ1-42 oligomers and upregulating synaptic plasticity–related proteins in the hippocampus. Neuroscience 163, 741–749. doi: 10.1016/j.neuroscience.2009.07.014, PMID: [DOI] [PubMed] [Google Scholar]
  143. Lin T. Y., Lu C. W., Wang S. J. (2016). Luteolin protects the hippocampus against neuron impairments induced by kainic acid in rats. Neurotoxicology 55, 48–57. doi: 10.1016/j.neuro.2016.05.008, PMID: [DOI] [PubMed] [Google Scholar]
  144. Lin D.-T., Makino Y., Sharma K., Hayashi T., Neve R., Takamiya K., et al. (2009). Regulation of AMPA receptor extrasynaptic insertion by 4.1 N, phosphorylation and palmitoylation. Nat. Neurosci. 12, 879–887. doi: 10.1038/nn.2351, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
  145. Lin C.-W., Wu M. J., Liu I. Y. C., Su J. D., Yen J. H. (2010). Neurotrophic and Cytoprotective action of Luteolin in PC12 cells through ERK-dependent induction of Nrf2-driven HO-1 expression. J. Agric. Food Chem. 58, 4477–4486. doi: 10.1021/jf904061x, PMID: [DOI] [PubMed] [Google Scholar]
  146. Liu L., Wong T. P., Pozza M. F., Lingenhoehl K., Wang Y., Sheng M., et al. (2004). Role of NMDA receptor subtypes in governing the direction of hippocampal synaptic plasticity. Science 304, 1021–1024. doi: 10.1126/science.1096615, PMID: [DOI] [PubMed] [Google Scholar]
  147. Liu Z., Yao X., Sun B., Jiang W., Liao C., Dai X., et al. (2021). Pretreatment with kaempferol attenuates microglia-mediate neuroinflammation by inhibiting MAPKs–NF–κB signaling pathway and pyroptosis after secondary spinal cord injury. Free Radic. Biol. Med. 168, 142–154. doi: 10.1016/j.freeradbiomed.2021.03.037, PMID: [DOI] [PubMed] [Google Scholar]
  148. Lopez-Sanchez C., Poejo J., Garcia-Lopez V., Salazar J., Garcia-Martinez V., Gutierrez-Merino C. (2022). Kaempferol prevents the activation of complement C3 protein and the generation of reactive A1 astrocytes that mediate rat brain degeneration induced by 3-nitropropionic acid. Food Chem. Toxicol. 164:113017. doi: 10.1016/j.fct.2022.113017, PMID: [DOI] [PubMed] [Google Scholar]
  149. Lowenstein D. H., Arsenault L. (1996). Dentate granule cell layer collagen explant cultures: spontaneous axonal growth and induction by brain-derived neurotrophic factor or basic fibroblast growth factor. Neuroscience 74, 1197–1208. doi: 10.1016/0306-4522(96)00226-6 [DOI] [PubMed] [Google Scholar]
  150. Lu B. (2003). BDNF and activity-dependent synaptic modulation. Learn. Memory 10, 86–98. doi: 10.1101/lm.54603 [DOI] [PMC free article] [PubMed] [Google Scholar]
  151. Lu L., Ben X., Xiao L., Peng M., Zhang Y. (2018). AMP-activated protein kinase activation in mediating phenylalanine-induced neurotoxicity in experimental models of phenylketonuria. J. Inherit. Metab. Dis. 41, 679–687. doi: 10.1007/s10545-017-0115-6, PMID: [DOI] [PubMed] [Google Scholar]
  152. Lucas D. R., Newhouse J. P. (1957). The toxic effect of sodium L-glutamate on the inner layers of the retina. A.M.A. Arch. Ophthalmol. 58, 193–201. doi: 10.1001/archopht.1957.00940010205006 [DOI] [PubMed] [Google Scholar]
  153. Lynch M. A. (2004). Long-term potentiation and memory. Physiol. Rev. 84, 87–136. doi: 10.1152/physrev.00014.2003 [DOI] [PubMed] [Google Scholar]
  154. Machaalani R., Chen H. (2018). Brain derived neurotrophic factor (BDNF), its tyrosine kinase receptor B (TrkB) and nicotine. Neurotoxicology 65, 186–195. doi: 10.1016/j.neuro.2018.02.014 [DOI] [PubMed] [Google Scholar]
  155. Malenka R. C. (2003). Synaptic plasticity and AMPA receptor trafficking. Ann. N. Y. Acad. Sci. 1003, 1–11. doi: 10.1196/annals.1300.001 [DOI] [PubMed] [Google Scholar]
  156. Malenka R. C., Bear M. F. (2004). LTP and LTD: an embarrassment of riches. Neuron 44, 5–21. doi: 10.1016/j.neuron.2004.09.012 [DOI] [PubMed] [Google Scholar]
  157. Malenka R. C., Kauer J. A., Zucker R. S., Nicoll R. A. (1988). Postsynaptic calcium is sufficient for potentiation of hippocampal synaptic transmission. Science 242, 81–84. doi: 10.1126/science.2845577 [DOI] [PubMed] [Google Scholar]
  158. Mariani E., Polidori M. C., Cherubini A., Mecocci P. (2005). Oxidative stress in brain aging, neurodegenerative and vascular diseases: an overview. J. Chromatogr. B 827, 65–75. doi: 10.1016/j.jchromb.2005.04.023, PMID: [DOI] [PubMed] [Google Scholar]
  159. Mathew S. S., Hablitz J. J. (2008). Calcium release via activation of presynaptic IP3 receptors contributes to kainate-induced IPSC facilitation in rat neocortex. Neuropharmacology. 2008/05/14 55, 106–116. doi: 10.1016/j.neuropharm.2008.05.005 [DOI] [PMC free article] [PubMed] [Google Scholar]
  160. McNamara J. O., Scharfman H. E. (2012). “Temporal lobe epilepsy and the BDNF receptor, TrkB” in Jasper's Basic Mechanisms of the Epilepsies. eds. Noebels J. L., Avoli M., Rogawski M. A., et al. (Bethesda (MD): National Center for Biotechnology Information; ) [PubMed] [Google Scholar]
  161. Medda N., Patra R., Ghosh T. K., Maiti S. (2020). Neurotoxic mechanism of arsenic: synergistic effect of mitochondrial instability, oxidative stress, and hormonal-neurotransmitter impairment. Biol. Trace Elem. Res. 198, 8–15. doi: 10.1007/s12011-020-02044-8, PMID: [DOI] [PubMed] [Google Scholar]
  162. Meldrum B. S. (1993). Excitotoxicity and selective neuronal loss in epilepsy. Brain Pathol. 3, 405–412. doi: 10.1111/j.1750-3639.1993.tb00768.x [DOI] [PubMed] [Google Scholar]
  163. Meo S. A., Al-Asiri S. A., Mahesar A. L., Ansari M. J. (2017). Role of honey in modern medicine. Saudi J. Biol. Sci. 24, 975–978. doi: 10.1016/j.sjbs.2016.12.010, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
  164. Merlio J.-P., Ernfors P., Kokaia Z., Middlemas D. S., Bengzon J., Kokaia M., et al. (1993). Increased production of the TrkB protein tyrosine kinase receptor after brain insults. Neuron 10, 151–164. doi: 10.1016/0896-6273(93)90307-D, PMID: [DOI] [PubMed] [Google Scholar]
  165. Michener C. D. (2013). “The Meliponini. Vit., SRM Pedro & DW Roubik” in PotHoney: A Legacy of Stingless Bees (New York: Springer; ), 3–17. [Google Scholar]
  166. Migliore L., Fontana I., Colognato R., Coppede F., Siciliano G., Murri L. (2005). Searching for the role and the most suitable biomarkers of oxidative stress in Alzheimer’s disease and in other neurodegenerative diseases. Neurobiol. Aging 26, 587–595. doi: 10.1016/j.neurobiolaging.2004.10.002, PMID: [DOI] [PubMed] [Google Scholar]
  167. Mijanur Rahman M., Gan S. H., Khalil M. I. (2014). “Neurological effects of honey: current and future prospects” in Evid Based Complement. Altern. Med., vol. 2014, 958721. doi: 10.1155/2014/958721 [DOI] [PMC free article] [PubMed] [Google Scholar]
  168. Minichiello L., Korte M., Wolfer D., Kühn R., Unsicker K., Cestari V., et al. (1999). Essential role for TrkB receptors in Hippocampus-mediated learning. Neuron 24, 401–414. doi: 10.1016/S0896-6273(00)80853-3, PMID: [DOI] [PubMed] [Google Scholar]
  169. Mohamad M. A. M., Mazlan M. A., Ibrahim M., Mat Yusof A., Shamsuddin S. A. A., Nik Hassan N. F., et al. (2018). The effect of Malaysian stingless bee, Trigona spp. honey in promoting proliferation of the undifferentiated stem cell. Asia Pac. J. Mol. Biol. Biotechnol. 27, 10–19. doi: 10.35118/apjmbb.2019.027.1.02 [DOI] [Google Scholar]
  170. Mohamed M., Sulaiman S. A., Jaafar H., Sirajudeen K. N. S. (2012). Effect of different doses of Malaysian honey on reproductive parameters in adult male rats. Andrologia 44, 182–186. doi: 10.1111/j.1439-0272.2010.01159.x, PMID: [DOI] [PubMed] [Google Scholar]
  171. Mohd Rafie A. Z., Syahir A., Wan Ahmad W. A. N., Mustafa M. Z., Mariatulqabtiah A. R. (2018). Supplementation of stingless bee honey from Heterotrigona itama improves antiobesity parameters in high-fat diet induced obese rat model. Evid. Based Complement Alternat Med 2018:6371582. doi: 10.1155/2018/6371582, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
  172. Mokarrami S., Jahanshahi M., Elyasi L., Badelisarkala H., Khalili M. (2022). Naringin prevents the reduction of the number of neurons and the volume of CA1 in a scopolamine-induced animal model of Alzheimer’s disease (AD): a stereological study. Int. J. Neurosci. 18, 1–8. doi: 10.1080/00207454.2022.2102981, PMID: [DOI] [PubMed] [Google Scholar]
  173. Mokaya H. O., Nkoba K., Ndunda R. M., Vereecken N. J. (2022). Characterization of honeys produced by sympatric species of Afrotropical stingless bees (Hymenoptera, Meliponini). Food Chem. 366:130597. doi: 10.1016/j.foodchem.2021.130597, PMID: [DOI] [PubMed] [Google Scholar]
  174. Moniruzzaman M., Khalil M. I., Sulaiman S. A., Gan S. H. (2013a). Physicochemical and antioxidant properties of Malaysian honeys produced by Apis cerana, Apis dorsata and Apis mellifera. BMC Complement. Altern. Med. 13:43. doi: 10.1186/1472-6882-13-43, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
  175. Moniruzzaman M., Sulaiman S. A., Khalil M. I., Gan S. H. (2013b). Evaluation of physicochemical and antioxidant properties of sourwood and other Malaysian honeys: a comparison with manuka honey. Chem. Cent. J. 7:138. doi: 10.1186/1752-153X-7-138, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
  176. Morris R. G. M., Moser E. I., Riedel G., Martin S. J., Sandin J., Day M., et al. (2003). Elements of a neurobiological theory of the hippocampus: the role of activity-dependent synaptic plasticity in memory. Philos. Trans. R. Soc. Lond. 358, 773–786. doi: 10.1098/rstb.2002.1264 [DOI] [PMC free article] [PubMed] [Google Scholar]
  177. Muhammad Abdul Kadar N. N., Ahmad F., Teoh S. L., Yahaya M. F. (2022). Comparable benefits of stingless bee honey and Caffeic acid in mitigating the negative effects of metabolic syndrome on the brain. Antioxidants 11:2154. doi: 10.3390/antiox11112154, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
  178. Murphy D. D., Cole N. B., Segal M. (1998). Brain-derived neurotrophic factor mediates estradiol-induced dendritic spine formation in hippocampal neurons. Proc. Natl. Acad. Sci. 95, 11412–11417. doi: 10.1073/pnas.95.19.11412 [DOI] [PMC free article] [PubMed] [Google Scholar]
  179. Murray P. S., Holmes P. V. (2011). An overview of brain-derived neurotrophic factor and implications for excitotoxic vulnerability in the hippocampus. Int. J. Pept. 2011:654085. doi: 10.1155/2011/654085 [DOI] [PMC free article] [PubMed] [Google Scholar]
  180. Mustafa M., Yaacob N., Sulaiman S. (2018). Reinventing the honey industry: opportunities of the stingless bee. Malays. J. Med. Sci. 25, 1–5. doi: 10.21315/mjms2018.25.4.1 [DOI] [PMC free article] [PubMed] [Google Scholar]
  181. Mustafa M. Z., Zulkifli F. N., Fernandez I., Mariatulqabtiah A. R., Sangu M., Nor Azfa J., et al. (2019). Stingless bee honey improves spatial memory in mice, probably associated with brain-derived neurotrophic factor (BDNF) and inositol 1,4,5-triphosphate receptor type 1 (Itpr1) genes. Evid. Based Complement. Altern. Med. 2019:8258307. doi: 10.1155/2019/8258307 [DOI] [PMC free article] [PubMed] [Google Scholar]
  182. Nakajima K., Niisato N., Marunaka Y. (2011). Genistein enhances the NGF-induced neurite outgrowth. Biomed. Res. 32, 351–356. doi: 10.2220/biomedres.32.351 [DOI] [PubMed] [Google Scholar]
  183. Nayan N. S., Yazid M. A. M., Nallappan K., Amran A. A., Zaidi N. S., Zakaria F., et al. (2020). In vitro modulation of endogenous antioxidant enzyme activities and oxidative stress in autism Lymphoblastoid cell line (ALCL) by stingless bee honey treatment. Oxid. Med. Cell. Longev. 2020:4539891. doi: 10.1155/2020/4539891 [DOI] [PMC free article] [PubMed] [Google Scholar]
  184. Ng W.-J., Lye P.-Y., Chan Y.-J., Lau Z.-K., Ee K.-Y. (2017). Synergistic effect of trigona honey and ampicillin on Staphylococcus aureus isolated from infected wound. Int. J. Pharmacol. 13, 403–407. doi: 10.3923/ijp.2017.403.407 [DOI] [Google Scholar]
  185. Ngaini Z., Hussain H., Kelabo E. S., Wahi R., Farooq S. (2021). Chemical profiling, biological properties and environmental contaminants of stingless bee honey and propolis. J. Apic. Res. 60, 1–17. doi: 10.1080/00218839.2021.1948745 [DOI] [Google Scholar]
  186. Nicoll R. A., Malenka R. C. (1999). Expression mechanisms underlying NMDA receptor-dependent long-term potentiation. Ann. N. Y. Acad. Sci. 868, 515–525. doi: 10.1111/j.1749-6632.1999.tb11320.x [DOI] [PubMed] [Google Scholar]
  187. Nordin A., Omar N., Sainik N. Q. A. V., Chowdhury S. R., Omar E. A., Saim A. B., et al. (2018). Low dose stingless bee honey increases viability of human dermal fibroblasts that could potentially promote wound healing. Wound Med. 23, 22–27. doi: 10.1016/j.wndm.2018.09.005 [DOI] [Google Scholar]
  188. Nowak L., Bregestovski P., Ascher P., Herbet A., Prochiantz A. (1984). Magnesium gates glutamate-activated channels in mouse central neurones. Nature 307, 462–465. doi: 10.1038/307462a0 [DOI] [PubMed] [Google Scholar]
  189. Ooi T. C., Yaacob M. H., Rajab N. F., Shahar S., Sharif R. (2021). The stingless bee honey protects against hydrogen peroxide-induced oxidative damage and lipopolysaccharide-induced inflammation in vitro. Saudi J. Biol. Sci. 28, 2987–2994. doi: 10.1016/j.sjbs.2021.02.039 [DOI] [PMC free article] [PubMed] [Google Scholar]
  190. Özbalci B., Boyaci İ. H., Topcu A., Kadılar C., Tamer U. (2013). Rapid analysis of sugars in honey by processing Raman spectrum using chemometric methods and artificial neural networks. Food Chem. 136, 1444–1452. doi: 10.1016/j.foodchem.2012.09.064 [DOI] [PubMed] [Google Scholar]
  191. Pan X., Liu X., Zhao H., Wu B., Liu G. (2020). Antioxidant, anti-inflammatory and neuroprotective effect of kaempferol on rotenone-induced Parkinson’s disease model of rats and SH-S5Y5 cells by preventing loss of tyrosine hydroxylase. J. Funct. Foods 74:104140. doi: 10.1016/j.jff.2020.104140 [DOI] [Google Scholar]
  192. Park S., Moon N. R., Kang S., Kim D. S. (2022). Ferulic acid and vinpocetine intake improves memory function by enhancing insulin sensitivity and reducing neuroinflammation and oxidative stress in type 2 diabetic animals with induced Alzheimer’s disease. J. Funct. Foods 95:105180. doi: 10.1016/j.jff.2022.105180 [DOI] [Google Scholar]
  193. Park H., Poo M. (2013). Neurotrophin regulation of neural circuit development and function. Nat. Rev. Neurosci. 14, 7–23. doi: 10.1038/nrn3379 [DOI] [PubMed] [Google Scholar]
  194. Park S. H., Sim Y. B., Han P. L., Lee J. K., Suh H. W. (2010). Antidepressant-like effect of kaempferol and quercitirin, isolated from Opuntia ficus-indica var. saboten. Exp. Neurobiol. 19, 30–38. doi: 10.5607/en.2010.19.1.30, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
  195. Parpura V., Zorec R. (2010). Gliotransmission: Exocytotic release from astrocytes. Brain Res. Rev. 63, 83–92. doi: 10.1016/j.brainresrev.2009.11.008 [DOI] [PMC free article] [PubMed] [Google Scholar]
  196. Patapoutian A., Reichardt L. F. (2001). Trk receptors: mediators of neurotrophin action. Curr. Opin. Neurobiol. 11, 272–280. doi: 10.1016/S0959-4388(00)00208-7 [DOI] [PubMed] [Google Scholar]
  197. Patterson S. L., Grover L. M., Schwartzkroin P. A., Bothwell M. (1992). Neurotrophin expression in rat hippocampal slices: a stimulus paradigm inducing LTP in CA1 evokes increases in BDNF and NT-3 mRNAs. Neuron 9, 1081–1088. doi: 10.1016/0896-6273(92)90067-N [DOI] [PubMed] [Google Scholar]
  198. Paul R., Nath J., Paul S., Mazumder M. K., Phukan B. C., Roy R., et al. (2021). Suggesting 7,8-dihydroxyflavone as a promising nutraceutical against CNS disorders. Neurochem. Int. 148:105068. doi: 10.1016/j.neuint.2021.105068 [DOI] [PubMed] [Google Scholar]
  199. Pearson-Smith J. N., Patel M. (2017). Metabolic dysfunction and oxidative stress in epilepsy. Int. J. Mol. Sci. doi: 10.3390/ijms18112365 [DOI] [PMC free article] [PubMed] [Google Scholar]
  200. Perry G., Nunomura A., Hirai K., Zhu X., Pérez M., Avila J., et al. (2002). Is oxidative damage the fundamental pathogenic mechanism of Alzheimer’s and other neurodegenerative diseases? Free Radic. Biol. Med. 33, 1475–1479. doi: 10.1016/s0891-5849(02)01113-9 [DOI] [PubMed] [Google Scholar]
  201. Puttachary S., Sharma S., Stark S., Thippeswamy T. (2015). Seizure-induced oxidative stress in temporal lobe epilepsy. Biomed. Res. Int. 2015:745613. doi: 10.1155/2015/745613 [DOI] [PMC free article] [PubMed] [Google Scholar]
  202. Rafiee Sardooi A., Reisi P., Yazdi A. (2021). Protective effect of honey on learning and memory impairment, depression and neurodegeneration induced by chronic unpredictable mild stress TT. Physiol-Pharmacol 25, 21–35. doi: 10.32598/ppj.25.1.90 [DOI] [Google Scholar]
  203. Ramli A. S., Basrawi F., Yusof M. H. B., Oumer A. N., Johari N. A., Muhamadb A., et al. (2019). Experimental analysis on a novel low-temperature vacuum drying with induced nucleation technique for dewatering stingless bees honey. Dry. Technol. 37, 149–155. doi: 10.1080/07373937.2018.1444634 [DOI] [Google Scholar]
  204. Ranneh Y., Ali F., Zarei M., Akim A. M., Hamid H. A., Khazaai H. (2018). Malaysian stingless bee and Tualang honeys: a comparative characterization of total antioxidant capacity and phenolic profile using liquid chromatography-mass spectrometry. LWT 89, 1–9. doi: 10.1016/j.lwt.2017.10.020 [DOI] [Google Scholar]
  205. Ranneh Y., et al. (2019). Stingless bee honey protects against lipopolysaccharide induced-chronic subclinical systemic inflammation and oxidative stress by modulating Nrf2, NF-κB and p38 MAPK. Nutr. Metab. 16:15. doi: 10.1186/s12986-019-0341-z [DOI] [PMC free article] [PubMed] [Google Scholar]
  206. Rao P. V., Akim A. M., Hamid H. A., Khazaai H., Fadel A., Mahmoud A. M. (2016). Biological and therapeutic effects of honey produced by honey bees and stingless bees: a comparative review. Rev. Bras 26, 657–664. doi: 10.1016/j.bjp.2016.01.012 [DOI] [Google Scholar]
  207. Rasmussen C., Cameron S. (2009). Global stingless bee phylogeny supports ancient divergence, vicariance, and long distance dispersal. Biol. J. Linn. Soc. 99, 206–232. doi: 10.1111/j.1095-8312.2009.01341.x [DOI] [Google Scholar]
  208. Reichardt L. F. (2006). Neurotrophin-regulated signalling pathways. Philos. Transact. R. Soc. B Biol. Sci. 361, 1545–1564. doi: 10.1098/rstb.2006.1894 [DOI] [PMC free article] [PubMed] [Google Scholar]
  209. Rendeiro C., Vauzour D., Rattray M., Waffo-Téguo P., Mérillon J. M., Butler L. T., et al. (2013). Dietary levels of pure flavonoids improve spatial memory performance and increase hippocampal brain-derived neurotrophic factor. PLoS One 8:e63535. doi: 10.1371/journal.pone.0063535 [DOI] [PMC free article] [PubMed] [Google Scholar]
  210. Represa A., Tremblay E., Ben-Ari Y. (1987). Kainate binding sites in the hippocampal mossy fibers: localization and plasticity. Neuroscience 20, 739–748. doi: 10.1016/0306-4522(87)90237-5 [DOI] [PubMed] [Google Scholar]
  211. Roganovic M., Pantovic S., Dizdarevic S. (2019). Role of the oxidative stress in the pathogenesis of epilepsy. Neurol. Sci. Neurophysiol. 36, 1–8. doi: 10.5152/NSN.2019.11632 [DOI] [Google Scholar]
  212. Sabatini B. L., Maravall M., Svoboda K. (2001). Ca2+ signaling in dendritic spines. Curr. Opin. Neurobiol. 11, 349–356. doi: 10.1016/S0959-4388(00)00218-X [DOI] [PubMed] [Google Scholar]
  213. Sahlan M., Rahmawati O., Pratami D., Raffiudin R., Mukti R., Hermasyah H. (2020). The effects of stingless bee (Tetragonula biroi) honey on streptozotocin-induced diabetes mellitus in rats. Saudi J. Biol. Sci. 27, 2025–2030. doi: 10.1016/j.sjbs.2019.11.039 [DOI] [PMC free article] [PubMed] [Google Scholar]
  214. Saiful Yazan L., Muhamad Zali M. F., Mohd Ali R., Zainal N. A., Esa N., Sapuan S., et al. (2016). Chemopreventive properties and toxicity of Kelulut honey in Sprague Dawley rats induced with Azoxymethane. BioMed Res. Int. 2016:4036926. doi: 10.1155/2016/4036926 [DOI] [PMC free article] [PubMed] [Google Scholar]
  215. Santos N. A. G. D. (2014). Caffeic acid phenethyl ester (CAPE) protects PC12 cells from MPP+ toxicity by inducing the expression of neuron-typical proteins. Neurotoxicology 45, 131–138. doi: 10.1016/j.neuro.2014.09.007 [DOI] [PubMed] [Google Scholar]
  216. Sarbassov D. D., Ali S. M., Sabatini D. M. (2005). Growing roles for the mTOR pathway. Curr. Opin. Cell Biol. 17, 596–603. doi: 10.1016/j.ceb.2005.09.009 [DOI] [PubMed] [Google Scholar]
  217. Sathanoori M., Dias B. G., Nair A. R., Banerjee S. B., Tole S., Vaidya V. A. (2004). Differential regulation of multiple brain-derived neurotrophic factor transcripts in the postnatal and adult rat hippocampus during development, and in response to kainate administration. Mol. Brain Res. 130, 170–177. doi: 10.1016/j.molbrainres.2004.08.002 [DOI] [PubMed] [Google Scholar]
  218. Sawaya A. I. B. S. C., Marcucci M. (2011). Analytical methods applied to diverse types of Brazilian propolis. Chem. Cent. J. 5:27. doi: 10.1186/1752-153X-5-27 [DOI] [PMC free article] [PubMed] [Google Scholar]
  219. Saxena S., Gautam S., Sharma A. (2010). Physical, biochemical and antioxidant properties of some Indian honeys. Food Chem. 118, 391–397. doi: 10.1016/j.foodchem.2009.05.001 [DOI] [Google Scholar]
  220. Scharfman H., Goodman J., Macleod A., Phani S., Antonelli C., Croll S. (2005). Increased neurogenesis and the ectopic granule cells after intrahippocampal BDNF infusion in adult rats. Exp. Neurol. 192, 348–356. doi: 10.1016/j.expneurol.2004.11.016 [DOI] [PubMed] [Google Scholar]
  221. Scharfman H. E., Goodman J. H., Sollas A. L. (1999). Actions of brain-derived neurotrophic factor in slices from rats with spontaneous seizures and mossy fiber sprouting in the dentate gyrus. J. Neurosci. 19, 5619–5631. doi: 10.1523/JNEUROSCI.19-13-05619.1999, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
  222. Se K. W., Ghoshal S. K., Wahab R. A., Ibrahim R. K. R., Lani M. N. (2018). A simple approach for rapid detection and quantification of adulterants in stingless bees (Heterotrigona itama) honey. Food Res. Int. 105, 453–460. doi: 10.1016/j.foodres.2017.11.012 [DOI] [PubMed] [Google Scholar]
  223. Segal R. A., Greenberg M. E. (1996). Intracellular Signaling pathways activated by neuropathic factors. Annu. Rev. Neurosci. 19, 463–489. doi: 10.1146/annurev.ne.19.030196.002335 [DOI] [PubMed] [Google Scholar]
  224. Selcher J. C., Weeber E. J., Varga A. W., Sweatt J. D., Swank M. (2002). Protein kinase signal transduction cascades in mammalian associative conditioning. Neuroscientist 8, 122–131. doi: 10.1177/107385840200800208 [DOI] [PubMed] [Google Scholar]
  225. Selvaraju K., Vikram P., Soon J. M., Krishnan K. T., Mohammed A. (2019). Melissopalynological, physicochemical and antioxidant properties of honey from west coast of Malaysia. J. Food Sci. Technol. 56, 2508–2521. doi: 10.1007/s13197-019-03728-3 [DOI] [PMC free article] [PubMed] [Google Scholar]
  226. Shahnawaz M., Sheikh S. A., Hussain M., Razaq A., Khan S. S. (2013). A study on the determination of physicochemical properties of honey from different valleys of Gilgit-Baltistan. Int. J. Agric. Sci. Res. 2, 49–53. Available at: https://www.semanticscholar.org/paper/A-study-on-the-determination-of-physicochemical-of-Shahnawaz-Sheikh/0fcf8bb9693d2f00094827ae5da107f96f59f609 [Google Scholar]
  227. Shamsudin S., Selamat J., Sanny M., Abd Razak S. B., Jambari N. N., Mian Z., et al. (2019b). Influence of origins and bee species on physicochemical, antioxidant properties and botanical discrimination of stingless bee honey. Int. J. Food Prop. 22, 239–264. doi: 10.1080/10942912.2019.1576730 [DOI] [Google Scholar]
  228. Shamsudin S., Selamat J., Sanny M., Shamsul Bahari A. R., Jambari N. N., Khatib A. (2019a). A comparative characterization of physicochemical and antioxidants properties of processed Heterotrigona itama honey from different origins and classification by Chemometrics analysis. Molecules 24:3898. doi: 10.3390/molecules24213898 [DOI] [PMC free article] [PubMed] [Google Scholar]
  229. Shapla U. M., Solayman M., Alam N., Khalil M. I., Gan S. H. (2018). 5-Hydroxymethylfurfural (HMF) levels in honey and other food products: effects on bees and human health. Chem. Cent. J. 12:35. doi: 10.1186/s13065-018-0408-3 [DOI] [PMC free article] [PubMed] [Google Scholar]
  230. Shepherd J. D., Huganir R. L. (2007). The cell biology of synaptic plasticity: AMPA receptor trafficking. Annu. Rev. Cell Dev. Biol. 23, 613–643. doi: 10.1146/annurev.cellbio.23.090506.123516 [DOI] [PubMed] [Google Scholar]
  231. Shooshtari M. K., Sarkaki A., Mansouri S. M. T., Badavi M., Khorsandi L., Ghasemi Dehcheshmeh M. (2020). Protective effects of Chrysin against memory impairment, cerebral hyperemia and oxidative stress after cerebral hypoperfusion and reperfusion in rats. Metab. Brain Dis. 35, 401–412. doi: 10.1007/s11011-019-00527-9 [DOI] [PubMed] [Google Scholar]
  232. Silva T. M. S., dos Santos F. P., Evangelista-Rodrigues A., da Silva E. M. S., da Silva G. S., de Novais J. S., et al. (2013). Phenolic compounds, melissopalynological, physicochemical analysis and antioxidant activity of jandaíra (Melipona subnitida) honey. J. Food Compos. Anal. 29, 10–18. doi: 10.1016/j.jfca.2012.08.010 [DOI] [Google Scholar]
  233. Silva L. R., Videira R., Monteiro A. P., Valentão P., Andrade P. B. (2009). Honey from Luso region (Portugal): physicochemical characteristics and mineral contents. Microchem. J. 93, 73–77. doi: 10.1016/j.microc.2009.05.005 [DOI] [Google Scholar]
  234. Singh N., Bath P. K. (1997). Quality evaluation of different types of Indian honey. Food Chem. 58, 129–133. doi: 10.1016/S0308-8146(96)00231-2 [DOI] [Google Scholar]
  235. Singh A., Upadhayay S., Mehan S. (2021). Inhibition of c-JNK/p38MAPK signaling pathway by Apigenin prevents neurobehavioral and neurochemical defects in ethidium bromide-induced experimental model of multiple sclerosis in rats: Evidence from CSF, blood plasma and brain samples. Phytomed. Plus 1:100139. doi: 10.1016/j.phyplu.2021.100139 [DOI] [Google Scholar]
  236. Slutsky A. B., Etnier J. L. (2019). Caloric restriction, physical activity, and cognitive performance: a review of evidence and a discussion of the potential mediators of BDNF and TrkB. Int. J. Sport Exercise Psychol. 17, 89–105. doi: 10.1080/1612197X.2016.1223422 [DOI] [Google Scholar]
  237. Soppet D., Escandon E., Maragos J., Middlemas D. S., Reid S. W., Blair J. (1991). The neurotrophic factors brain-derived neurotrophic factor and neurotrophin-3 are ligands for the trkB tyrosine kinase receptor. Cells 65, 895–903. doi: 10.1016/0092-8674(91)90396-G [DOI] [PubMed] [Google Scholar]
  238. Sousa J. M. B., Aquino I. S., Magnani M., de Albuquerque J. R., Dos Santos G. G., De Souza E. L., et al. (2013). Physicochemical aspects and sensory profile of stingless bee honeys from Seridó region. State of Rio Grande do Norte, Brazil’, Semina: Ciências Agrárias 34, 1765–1774. doi: 10.5433/1679-0359.2013v34n4p1765 [DOI] [Google Scholar]
  239. Souza E. C. A., Menezes C., Flach A. (2021). Stingless bee honey (Hymenoptera, Apidae, Meliponini): a review of quality control, chemical profile, and biological potential. Apidologie 52, 113–132. doi: 10.1007/s13592-020-00802-0 [DOI] [Google Scholar]
  240. Souza B. A., Roubik D., Barth O. M., Heard T. (2006). Composition of stingless bee honey: setting quality standards. Interciencia 31, 867–875. Avaiable at http://ve.scielo.org/scielo.php?pid=S0378-18442006001200008&script=sci_arttext [Google Scholar]
  241. Sternberg E. M. (2000). Interactions between the immune and neuroendocrine systems. Prog. Brain Res. 122, 35–42. doi: 10.1016/s0079-6123(08)62129-9 [DOI] [PubMed] [Google Scholar]
  242. Sujanto I. S. R., Ramly N. S., Ghani A. A., Huat J. T. Y., Alias N., Ngah N. (2021). The composition and functional properties of stingless bee honey: a review. Malays. J. Appl. Sci. 6, 111–127. doi: 10.37231/myjas.2021.6.1.281 [DOI] [Google Scholar]
  243. Sun Z., Meng F. H., Tu L. X., Sun L. (2019). Myricetin attenuates the severity of seizures and neuroapoptosis in pentylenetetrazole kindled mice by regulating the of BDNF-TrkB signaling pathway and modulating matrix metalloproteinase-9 and GABAA. Exp. Ther. Med. 17, 3083–3091. doi: 10.3892/etm.2019.7282 [DOI] [PMC free article] [PubMed] [Google Scholar]
  244. Sutherland B. A., Rahman R. M. A., Appleton I. (2006). Mechanisms of action of green tea catechins, with a focus on ischemia-induced neurodegeneration. J. Nutr. Biochem. 17, 291–306. doi: 10.1016/j.jnutbio.2005.10.005 [DOI] [PubMed] [Google Scholar]
  245. Sutton M. A., Schuman E. M. (2006). Dendritic protein synthesis, synaptic plasticity, and memory. Cells 127, 49–58. doi: 10.1016/j.cell.2006.09.014 [DOI] [PubMed] [Google Scholar]
  246. Sweatt J. D. (1999). Toward a molecular explanation for long-term potentiation. Learn. Mem. 6, 399–416. doi: 10.1101/lm.6.5.399 [DOI] [PubMed] [Google Scholar]
  247. Tanaka T., Saito H., Matsuki N. (1997). Inhibition of GABAA synaptic responses by brain-derived neurotrophic factor (BDNF) in rat Hippocampus. J. Neurosci. 17, 2959–2966. doi: 10.1523/JNEUROSCI.17-09-02959.1997 [DOI] [PMC free article] [PubMed] [Google Scholar]
  248. Tangsaengvit N., Kitphati W., Tadtong S., Bunyapraphatsara N., Nukoolkarn V. (2013). Neurite outgrowth and neuroprotective effects of quercetin from Caesalpinia mimosoides Lamk. On cultured P19-derived neurons. Evid. Based Complement. Alternat. Med. 2013:838051. doi: 10.1155/2013/838051 [DOI] [PMC free article] [PubMed] [Google Scholar]
  249. Tanila H. (2017). The role of BDNF in Alzheimer’s disease. Neurobiol. Dis. 97, 114–118. doi: 10.1016/j.nbd.2016.05.008 [DOI] [PubMed] [Google Scholar]
  250. Tenore G. C., Ritieni A., Campiglia P., Novellino E. (2012). Nutraceutical potential of monofloral honeys produced by the Sicilian black honeybees (Apis mellifera ssp. sicula). Food Chem. Toxicol. 50, 1955–1961. doi: 10.1016/j.fct.2012.03.067 [DOI] [PubMed] [Google Scholar]
  251. Twilley D., Lall N. (2014). “African plants with dermatological and ocular relevance,” in Toxicological Survey of African Medicinal Plants. Elsevier, 493–512.
  252. Tyler W. J., Pozzo-Miller L. (2003). Miniature synaptic transmission and BDNF modulate dendritic spine growth and form in rat CA1 neurones. J. Physiol. 553, 497–509. doi: 10.1113/jphysiol.2003.052639 [DOI] [PMC free article] [PubMed] [Google Scholar]
  253. Unno K., Takabayashi F., Yoshida H., Choba D., Fukutomi R., Kikunaga N., et al. (2007). Daily consumption of green tea catechin delays memory regression in aged mice. Biogerontology 8, 89–95. doi: 10.1007/s10522-006-9036-8 [DOI] [PubMed] [Google Scholar]
  254. Uren R. T., Turnley A. M. (2014). Regulation of neurotrophin receptor (Trk) signaling: suppressor of cytokine signaling 2 (SOCS2) is a new player. Front. Mol. Neurosci. 7:39. doi: 10.3389/fnmol.2014.00039 [DOI] [PMC free article] [PubMed] [Google Scholar]
  255. Vazhacharickal P. J. (2016). Nesting Behavior and Habitats of the Stingless Bee Trigona iridipennis Smith in Kerala: The Current Status of Knowledge. Grin Verlag Publisher. Available at: https://www.researchgate.net/publication/311970073
  256. Ventimiglia R., Mather P. E., Jones B. E., Lindsay R. M. (1995). The NeurotroDhins BDNF, NT-3 and NT-4/5 promote survival and morphological and biochemical differentiation of striatal neurons in vitro. Eur. J. Neurosci. 7, 213–222. doi: 10.1111/j.1460-9568.1995.tb01057.x [DOI] [PubMed] [Google Scholar]
  257. Vezzani A., Aronica E., Mazarati A., Pittman Q. J. (2013). Epilepsy and brain inflammation. Exp. Neurol. 244, 11–21. doi: 10.1016/j.expneurol.2011.09.033 [DOI] [PubMed] [Google Scholar]
  258. Vezzani A., Balosso S., Ravizza T. (2012). Inflammation and epilepsy. Handb. Clin. Neurol. 107, 163–175. doi: 10.1016/B978-0-444-52898-8.00010-0 [DOI] [PubMed] [Google Scholar]
  259. Vezzani A., French J., Bartfai T., Baram T. Z. (2011). The role of inflammation in epilepsy. Nat. Rev. Neurol. 7, 31–40. doi: 10.1038/nrneurol.2010.178 [DOI] [PMC free article] [PubMed] [Google Scholar]
  260. Vezzani A., Sperk G., Colmers W. F. (1999). Neuropeptide Y: emerging evidence for a functional role in seizure modulation. Trends Neurosci. 22, 25–30. doi: 10.1016/S0166-2236(98)01284-3, PMID: [DOI] [PubMed] [Google Scholar]
  261. Vijayakumar K., Jeyaraaj R. (2014). Taxonomic notes on stingless bee Trigona (Tetragonula) iridipennis Smith (Hymenoptera: Apidae) from India. J. Threatened Taxa 6, 6480–6484. doi: 10.11609/JoTT.o3773.6480-4 [DOI] [Google Scholar]
  262. Vit P., Medina M., Enríquez E. (2004). Quality standards for medicinal uses of Meliponinae honey in Guatemala, Mexico and Venezuela. Bee World 85, 2–5. doi: 10.1080/0005772X.2004.11099603 [DOI] [Google Scholar]
  263. Walz C., Jüngling K., Lessmann V., Gottmann K. (2006). Presynaptic plasticity in an immature neocortical network requires NMDA receptor activation and BDNF release. J. Neurophysiol. 96, 3512–3516. doi: 10.1152/jn.00018.2006 [DOI] [PubMed] [Google Scholar]
  264. Wang P., Jeng C. J., Chien C. L., Wang S. M. (2008). Signaling mechanisms of daidzein-induced axonal outgrowth in hippocampal neurons. Biochem. Biophys. Res. Commun. 366, 393–400. doi: 10.1016/j.bbrc.2007.11.147 [DOI] [PubMed] [Google Scholar]
  265. Wang J., Li Q. X. (2011). Chemical composition, characterization, and differentiation of honey botanical and geographical origins. Adv. Food Nutr. Res. 62, 89–137. doi: 10.1016/B978-0-12-385989-1.00003-X [DOI] [PubMed] [Google Scholar]
  266. Wang X., Michaelis E. K. (2010). Selective neuronal vulnerability to oxidative stress in the brain. Front. Aging Neurosci. 2:12. doi: 10.3389/fnagi.2010.00012 [DOI] [PMC free article] [PubMed] [Google Scholar]
  267. Waters J., Schaefer A., Sakmann B. (2005). Backpropagating action potentials in neurones: measurement, mechanisms and potential functions. Prog. Biophys. Mol. Biol. 87, 145–170. doi: 10.1016/j.pbiomolbio.2004.06.009 [DOI] [PubMed] [Google Scholar]
  268. Weissberg I., Reichert A. S., Heinemann U., Friedman A. (2011). Blood-brain barrier dysfunction in epileptogenesis of the temporal lobe. Epilepsy Res. Treat. 2011:143908. doi: 10.1155/2011/143908 [DOI] [PMC free article] [PubMed] [Google Scholar]
  269. Whitlock J. R., Heynen A. J., Shuler M. G., Bear M. F. (2006). Learning induces long-term potentiation in the hippocampus. Science 313, 1093–1097. doi: 10.1126/science.1128134 [DOI] [PubMed] [Google Scholar]
  270. Williams C. M., El Mohsen M. A., Vauzour D., Rendeiro C., Butler L. T., Ellis J. A., et al. (2008). Blueberry-induced changes in spatial working memory correlate with changes in hippocampal CREB phosphorylation and brain-derived neurotrophic factor (BDNF) levels. Free Radic. Biol. Med. 45, 295–305. doi: 10.1016/j.freeradbiomed.2008.04.008 [DOI] [PubMed] [Google Scholar]
  271. Wilson Horch H., Krüttgen A., Portbury S. D., Katz L. C. (1999). Destabilization of cortical dendrites and spines by BDNF. Neuron 23, 353–364. doi: 10.1016/S0896-6273(00)80785-0 [DOI] [PubMed] [Google Scholar]
  272. Wong P., Hii S., Koh C., Moh T., Gindi S. R. A. (2019). Chemical analysis on the honey of Heterotrigona itama and Tetrigona binghami from Sarawak, Malaysia. Sains Malaysiana 48, 1635–1642. doi: 10.17576/jsm-2019-4808-09 [DOI] [Google Scholar]
  273. Wu L.-H., Lin C., Lin H. Y., Liu Y. S., Wu C. Y., Tsai C. F., et al. (2016). Naringenin suppresses neuroinflammatory responses through inducing suppressor of cytokine signaling 3 expression. Mol. Neurobiol. 53, 1080–1091. doi: 10.1007/s12035-014-9042-9 [DOI] [PubMed] [Google Scholar]
  274. Wurzelmann M., Romeika J., Sun D. (2017). Therapeutic potential of brain-derived neurotrophic factor (BDNF) and a small molecular mimics of BDNF for traumatic brain injury. Neural Regen. Res. 12, 7–12. doi: 10.4103/1673-5374.198964 [DOI] [PMC free article] [PubMed] [Google Scholar]
  275. Xiao N., Le Q.-T. (2016). Neurotrophic factors and their potential applications in tissue regeneration. Arch. Immunol. Ther. Exp. 64, 89–99. doi: 10.1007/s00005-015-0376-4 [DOI] [PMC free article] [PubMed] [Google Scholar]
  276. Xu S. L., Choi R. C., Zhu K. Y., Leung K. W., Guo A. J., Bi D., et al. (2012). Isorhamnetin, a flavonol aglycone from Ginkgo biloba L., induces neuronal differentiation of cultured PC12 cells: potentiating the effect of nerve growth factor. Evid. Based Complement. Alternat. Med. 2012:278273. doi: 10.1155/2012/278273 [DOI] [PMC free article] [PubMed] [Google Scholar]
  277. Yaacob W. M. H. W., Long I., Zakaria R., Othman Z. (2020). Tualang honey and its Methanolic fraction improve LPS-induced learning and memory impairment in male rats: comparison with Memantine. Curr. Nutr. Food Sci. 16, 333–342. doi: 10.2174/1573401315666181130103456 [DOI] [Google Scholar]
  278. Yaacob M., Rajab N. F., Shahar S., Sharif R. (2018). Stingless bee honey and its potential value: a systematic review. Food Res. 2, 124–133. doi: 10.26656/fr.2017.2(2).212 [DOI] [Google Scholar]
  279. Yabe T., Hirahara H., Harada N., Ito N., Nagai T., Sanagi T., et al. (2010). Ferulic acid induces neural progenitor cell proliferation in vitro and in vivo. Neuroscience 165, 515–524. doi: 10.1016/j.neuroscience.2009.10.023 [DOI] [PubMed] [Google Scholar]
  280. Yadav R. K., Mehan S., Sahu R., Kumar S., Khan A., Makeen H. A., et al. (2022). Protective effects of apigenin on methylmercury-induced behavioral/neurochemical abnormalities and neurotoxicity in rats. Hum. Exp. Toxicol. 41:9603271221084276. doi: 10.1177/09603271221084276 [DOI] [PubMed] [Google Scholar]
  281. Yehezkel B.-A. (2008). Epilepsies and neuronal plasticity: for better or for worse? Dialogues Clin. Neurosci. 10, 17–27. doi: 10.31887/DCNS.2008.10.1/ybenari [DOI] [PMC free article] [PubMed] [Google Scholar]
  282. Yin L., Zhang Y., Wang L., Wu H., Azi F., Tekliye M., et al. (2022). Neuroprotective potency of a soy whey fermented by Cordyceps militaris SN-18 against hydrogen peroxide-induced oxidative injury in PC12 cells. Eur. J. Nutr. 61, 779–792. doi: 10.1007/s00394-021-02679-w [DOI] [PubMed] [Google Scholar]
  283. Yoshii A., Constantine-Paton M. (2007). BDNF induces transport of PSD-95 to dendrites through PI3K-AKT signaling after NMDA receptor activation. Nat. Neurosci. 10, 702–711. doi: 10.1038/nn1903 [DOI] [PubMed] [Google Scholar]
  284. Yoshii A., Constantine-Paton M. (2010). Postsynaptic BDNF-TrkB signaling in synapse maturation, plasticity, and disease. Dev. Neurobiol. 70, 304–322. doi: 10.1002/dneu.20765 [DOI] [PMC free article] [PubMed] [Google Scholar]
  285. Yoshii A., Constantine-Paton M. (2014). Postsynaptic localization of PSD-95 is regulated by all three pathways downstream of TrkB signaling. Front. Synap. Neurosci. 6:6. doi: 10.3389/fnsyn.2014.00006 [DOI] [PMC free article] [PubMed] [Google Scholar]
  286. Yury K., Hanse E., Kafitz K. W., Konnerth A. (2002). Postsynaptic induction of BDNF-mediated long-term potentiation. Science 295, 1729–1734. doi: 10.1126/science.1067766 [DOI] [PubMed] [Google Scholar]
  287. Zaidi H., Ouchemoukh S., Amessis-Ouchemoukh N., Debbache N., Pacheco R., Serralheiro M. L., et al. (2019). Biological properties of phenolic compound extracts in selected Algerian honeys—the inhibition of acetylcholinesterase and α-glucosidase activities. Eur. J. Integr. Med. 25, 77–84. doi: 10.1016/j.eujim.2018.11.008 [DOI] [Google Scholar]
  288. Zainin M. L., Hassan N. A. (2021). Heterotrigona Itama (Kelulut) honey and its potential value: a review. Asean J. Life Sci. 1, 42–45. Available at: https://ajls.journals.unisel.edu.my/index.php/ajls/article/view/24 [Google Scholar]
  289. Zhang X., Bu X., Jiang Y., Sun G., Jiang R., Huang X., et al. (2019). The antidepressant effects of apigenin are associated with the promotion of autophagy via the mTOR/AMPK/ULK1 pathway. Mol. Med. Rep. 20, 2867–2874. doi: 10.3892/mmr.2019.10491 [DOI] [PubMed] [Google Scholar]
  290. Zhang S.-H., Liu D., Hu Q., Zhu J., Wang S., Zhou S., et al. (2019). Ferulic acid ameliorates pentylenetetrazol-induced seizures by reducing neuron cell death. Epilepsy Res. 156:106183. doi: 10.1016/j.eplepsyres.2019.106183 [DOI] [PubMed] [Google Scholar]
  291. Zhang F., Wang Y. Y., Liu H., Lu Y. F., Wu Q., Liu J., et al. (2012, 2012). Resveratrol produces neurotrophic effects on cultured dopaminergic neurons through prompting astroglial BDNF and GDNF release. Evid. Based Complement. Alternat. Med. doi: 10.1155/2012/937605 [DOI] [PMC free article] [PubMed] [Google Scholar]
  292. Zhang Y., Zhao J., Afzal O., Kazmi I., Al-Abbasi F. A., Altamimi A. S. A. (2021). Neuroprotective role of chrysin-loaded poly(lactic-co-glycolic acid) nanoparticle against kindling-induced epilepsy through Nrf2/ARE/HO-1 pathway. J. Biochem. Mol. Toxicol. 35:e22634. doi: 10.1002/jbt.22634 [DOI] [PubMed] [Google Scholar]
  293. Zhou Q., Homma K. J., Poo M. (2004). Shrinkage of dendritic spines associated with long-term depression of hippocampal synapses. Neuron 44, 749–757. doi: 10.1016/j.neuron.2004.11.011 [DOI] [PubMed] [Google Scholar]
  294. Zhou Y., Wu H., Li S., Chen Q., Cheng X. W., Zheng J., et al. (2006). Requirement of TORC1 for late-phase long-term potentiation in the hippocampus. PLoS One 1:e16. doi: 10.1371/journal.pone.0000016 [DOI] [PMC free article] [PubMed] [Google Scholar]
  295. Zulkhairi Amin F. A., et al. (2018). Therapeutic properties of stingless bee honey in comparison with European bee honey. Adv. Pharmacol. Sci. 2018:6179596. doi: 10.1155/2018/6179596 [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Frontiers in Aging Neuroscience are provided here courtesy of Frontiers Media SA

RESOURCES