Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1997 Aug;73(2):779–788. doi: 10.1016/S0006-3495(97)78110-4

Differences in steady-state inactivation between Na channel isoforms affect local anesthetic binding affinity.

S N Wright 1, S Y Wang 1, R G Kallen 1, G K Wang 1
PMCID: PMC1180974  PMID: 9251794

Abstract

Cocaine and lidocaine are local anesthetics (LAs) that block Na currents in excitable tissues. Cocaine is also a cardiotoxic agent and can induce cardiac arrhythmia and ventricular fibrillation. Lidocaine is commonly used as a postinfarction antiarrhythmic agent. These LAs exert clinically relevant effects at concentrations that do not obviously affect the normal function of either nerve or skeletal muscle. We compared the cocaine and lidocaine affinities of human cardiac (hH1) and rat skeletal (mu 1) muscle Na channels that were transiently expressed in HEK 293t cells. The affinities of resting mu 1 and hH1 channels were similar for cocaine (269 and 235 microM, respectively) and for lidocaine (491 and 440 microM, respectively). In addition, the affinities of inactivated mu 1 and hH1 channels were also similar for cocaine (12 and 10 microM, respectively) and for lidocaine (19 and 12 microM, respectively). In contrast to previous studies, our results indicate that the greater sensitivity of cardiac tissue to cocaine or lidocaine is not due to a higher affinity of the LA receptor in cardiac Na channels, but that at physiological resting potentials (-100 to -90 mV), a greater percentage of hH1 channels than mu 1 channels are in the inactivated (i.e., high-affinity) state.

Full text

PDF
783

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bean B. P., Cohen C. J., Tsien R. W. Lidocaine block of cardiac sodium channels. J Gen Physiol. 1983 May;81(5):613–642. doi: 10.1085/jgp.81.5.613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bennett P. B., Valenzuela C., Chen L. Q., Kallen R. G. On the molecular nature of the lidocaine receptor of cardiac Na+ channels. Modification of block by alterations in the alpha-subunit III-IV interdomain. Circ Res. 1995 Sep;77(3):584–592. doi: 10.1161/01.res.77.3.584. [DOI] [PubMed] [Google Scholar]
  3. Cannon S. C., Strittmatter S. M. Functional expression of sodium channel mutations identified in families with periodic paralysis. Neuron. 1993 Feb;10(2):317–326. doi: 10.1016/0896-6273(93)90321-h. [DOI] [PubMed] [Google Scholar]
  4. Chahine M., Chen L. Q., Barchi R. L., Kallen R. G., Horn R. Lidocaine block of human heart sodium channels expressed in Xenopus oocytes. J Mol Cell Cardiol. 1992 Nov;24(11):1231–1236. doi: 10.1016/0022-2828(92)93090-7. [DOI] [PubMed] [Google Scholar]
  5. Clarkson C. W., Hondeghem L. M. Mechanism for bupivacaine depression of cardiac conduction: fast block of sodium channels during the action potential with slow recovery from block during diastole. Anesthesiology. 1985 Apr;62(4):396–405. [PubMed] [Google Scholar]
  6. Courtney K. R. Mechanism of frequency-dependent inhibition of sodium currents in frog myelinated nerve by the lidocaine derivative GEA. J Pharmacol Exp Ther. 1975 Nov;195(2):225–236. [PubMed] [Google Scholar]
  7. Crumb W. J., Jr, Clarkson C. W. Characterization of cocaine-induced block of cardiac sodium channels. Biophys J. 1990 Mar;57(3):589–599. doi: 10.1016/S0006-3495(90)82574-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Crumb W. J., Jr, Clarkson C. W. Characterization of the sodium channel blocking properties of the major metabolites of cocaine in single cardiac myocytes. J Pharmacol Exp Ther. 1992 Jun;261(3):910–917. [PubMed] [Google Scholar]
  9. Crumb W. J., Jr, Kadowitz P. J., Xu Y. Q., Clarkson C. W. Electrocardiographic evidence for cocaine cardiotoxicity in cat. Can J Physiol Pharmacol. 1990 May;68(5):622–625. doi: 10.1139/y90-090. [DOI] [PubMed] [Google Scholar]
  10. Gellens M. E., George A. L., Jr, Chen L. Q., Chahine M., Horn R., Barchi R. L., Kallen R. G. Primary structure and functional expression of the human cardiac tetrodotoxin-insensitive voltage-dependent sodium channel. Proc Natl Acad Sci U S A. 1992 Jan 15;89(2):554–558. doi: 10.1073/pnas.89.2.554. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. George A. L., Jr, Komisarof J., Kallen R. G., Barchi R. L. Primary structure of the adult human skeletal muscle voltage-dependent sodium channel. Ann Neurol. 1992 Feb;31(2):131–137. doi: 10.1002/ana.410310203. [DOI] [PubMed] [Google Scholar]
  12. Grant A. O., Starmer C. F., Strauss H. C. Antiarrhythmic drug action. Blockade of the inward sodium current. Circ Res. 1984 Oct;55(4):427–439. doi: 10.1161/01.res.55.4.427. [DOI] [PubMed] [Google Scholar]
  13. Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
  14. Hille B. Local anesthetics: hydrophilic and hydrophobic pathways for the drug-receptor reaction. J Gen Physiol. 1977 Apr;69(4):497–515. doi: 10.1085/jgp.69.4.497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hondeghem L. M., Katzung B. G. Time- and voltage-dependent interactions of antiarrhythmic drugs with cardiac sodium channels. Biochim Biophys Acta. 1977 Nov 14;472(3-4):373–398. doi: 10.1016/0304-4157(77)90003-x. [DOI] [PubMed] [Google Scholar]
  16. Jia H., Furukawa T., Singer D. H., Sakakibara Y., Eager S., Backer C., Arentzen C., Wasserstrom J. A. Characteristics of lidocaine block of sodium channels in single human atrial cells. J Pharmacol Exp Ther. 1993 Mar;264(3):1275–1284. [PubMed] [Google Scholar]
  17. Nuss H. B., Tomaselli G. F., Marbán E. Cardiac sodium channels (hH1) are intrinsically more sensitive to block by lidocaine than are skeletal muscle (mu 1) channels. J Gen Physiol. 1995 Dec;106(6):1193–1209. doi: 10.1085/jgp.106.6.1193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. O'Leary M. E., Horn R. Internal block of human heart sodium channels by symmetrical tetra-alkylammoniums. J Gen Physiol. 1994 Sep;104(3):507–522. doi: 10.1085/jgp.104.3.507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Ragsdale D. S., McPhee J. C., Scheuer T., Catterall W. A. Molecular determinants of state-dependent block of Na+ channels by local anesthetics. Science. 1994 Sep 16;265(5179):1724–1728. doi: 10.1126/science.8085162. [DOI] [PubMed] [Google Scholar]
  20. Schwarz W., Palade P. T., Hille B. Local anesthetics. Effect of pH on use-dependent block of sodium channels in frog muscle. Biophys J. 1977 Dec;20(3):343–368. doi: 10.1016/S0006-3495(77)85554-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Simkhovich B. Z., Kloner R. A., Alker K. J., Giaconi J. Time course of direct cardiotoxic effects of high cocaine concentration in isolated rabbit heart. J Cardiovasc Pharmacol. 1994 Mar;23(3):509–516. [PubMed] [Google Scholar]
  22. Starmer C. F. Theoretical characterization of ion channel blockade. Competitive binding to periodically accessible receptors. Biophys J. 1987 Sep;52(3):405–412. doi: 10.1016/S0006-3495(87)83229-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Strichartz G. R. The inhibition of sodium currents in myelinated nerve by quaternary derivatives of lidocaine. J Gen Physiol. 1973 Jul;62(1):37–57. doi: 10.1085/jgp.62.1.37. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Trimmer J. S., Cooperman S. S., Tomiko S. A., Zhou J. Y., Crean S. M., Boyle M. B., Kallen R. G., Sheng Z. H., Barchi R. L., Sigworth F. J. Primary structure and functional expression of a mammalian skeletal muscle sodium channel. Neuron. 1989 Jul;3(1):33–49. doi: 10.1016/0896-6273(89)90113-x. [DOI] [PubMed] [Google Scholar]
  25. Virmani R., Robinowitz M., Smialek J. E., Smyth D. F. Cardiovascular effects of cocaine: an autopsy study of 40 patients. Am Heart J. 1988 May;115(5):1068–1076. doi: 10.1016/0002-8703(88)90078-6. [DOI] [PubMed] [Google Scholar]
  26. Wang D. W., George A. L., Jr, Bennett P. B. Comparison of heterologously expressed human cardiac and skeletal muscle sodium channels. Biophys J. 1996 Jan;70(1):238–245. doi: 10.1016/S0006-3495(96)79566-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Wang D. W., Nie L., George A. L., Jr, Bennett P. B. Distinct local anesthetic affinities in Na+ channel subtypes. Biophys J. 1996 Apr;70(4):1700–1708. doi: 10.1016/S0006-3495(96)79732-1. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES