Abstract
Congenital end-plate acetylcholinesterase (AChE) deficiency (CEAD), the cause of a disabling myasthenic syndrome, arises from defects in the COLQ gene, which encodes the AChE triple-helical collagenlike-tail subunit that anchors catalytic subunits of AChE to the synaptic basal lamina. Here we describe a patient with CEAD with a nonsense mutation (R315X) and a splice-donor-site mutation at position +3 of intron 16 (IVS16+3A-->G) of COLQ. Because both A and G are consensus nucleotides at the +3 position of splice-donor sites, we constructed a minigene that spans exons 15-17 and harbors IVS16+3A-->G for expression in COS cells. We found that the mutation causes skipping of exon 16. The mutant splice-donor site of intron 16 harbors five discordant nucleotides (at -3, -2, +3, +4, and +6) that do not base-pair with U1 small-nuclear RNA (snRNA), the molecule responsible for splice-donor-site recognition. Versions of the minigene harboring, at either +4 or +6, nucleotides complementary to U1 snRNA restore normal splicing. Analysis of 1,801 native splice-donor sites reveals that presence of a G nucleotide at +3 is associated with preferential usage, at positions +4 to +6, of nucleotides concordant to U1 snRNA. Analysis of 11 disease-associated IVS+3A-->G mutations indicates that, on average, two of three nucleotides at positions +4 to +6 fail to base-pair, and that the nucleotide at +4 never base-pairs, with U1 snRNA. We conclude that, with G at +3, normal splicing generally depends on the concordance that residues at +4 to +6 have with U1 snRNA, but other cis-acting elements may also be important in assuring the fidelity of splicing.
Full Text
The Full Text of this article is available as a PDF (564.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson K., Moore M. J. Bimolecular exon ligation by the human spliceosome. Science. 1997 Jun 13;276(5319):1712–1716. doi: 10.1126/science.276.5319.1712. [DOI] [PubMed] [Google Scholar]
- Berget S. M. Exon recognition in vertebrate splicing. J Biol Chem. 1995 Feb 10;270(6):2411–2414. doi: 10.1074/jbc.270.6.2411. [DOI] [PubMed] [Google Scholar]
- Berglund J. A., Chua K., Abovich N., Reed R., Rosbash M. The splicing factor BBP interacts specifically with the pre-mRNA branchpoint sequence UACUAAC. Cell. 1997 May 30;89(5):781–787. doi: 10.1016/s0092-8674(00)80261-5. [DOI] [PubMed] [Google Scholar]
- Bidichandani S. I., Shiach C. R., Lanyon W. G., Connor J. M. A novel splice donor mutation affecting position +3 in intron 6 of the factor VIII gene. Hum Mol Genet. 1994 Apr;3(4):651–653. doi: 10.1093/hmg/3.4.651. [DOI] [PubMed] [Google Scholar]
- Bon S., Coussen F., Massoulié J. Quaternary associations of acetylcholinesterase. II. The polyproline attachment domain of the collagen tail. J Biol Chem. 1997 Jan 31;272(5):3016–3021. doi: 10.1074/jbc.272.5.3016. [DOI] [PubMed] [Google Scholar]
- Brackett J. C., Sims H. F., Rinaldo P., Shapiro S., Powell C. K., Bennett M. J., Strauss A. W. Two alpha subunit donor splice site mutations cause human trifunctional protein deficiency. J Clin Invest. 1995 May;95(5):2076–2082. doi: 10.1172/JCI117894. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Buraczynska M., Wu W., Fujita R., Buraczynska K., Phelps E., Andréasson S., Bennett J., Birch D. G., Fishman G. A., Hoffman D. R. Spectrum of mutations in the RPGR gene that are identified in 20% of families with X-linked retinitis pigmentosa. Am J Hum Genet. 1997 Dec;61(6):1287–1292. doi: 10.1086/301646. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carothers A. M., Urlaub G., Grunberger D., Chasin L. A. Splicing mutants and their second-site suppressors at the dihydrofolate reductase locus in Chinese hamster ovary cells. Mol Cell Biol. 1993 Aug;13(8):5085–5098. doi: 10.1128/mcb.13.8.5085. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carstens R. P., Fenton W. A., Rosenberg L. R. Identification of RNA splicing errors resulting in human ornithine transcarbamylase deficiency. Am J Hum Genet. 1991 Jun;48(6):1105–1114. [PMC free article] [PubMed] [Google Scholar]
- Casanueva O. I., Deprez P., García-Huidobro T., Inestrosa N. C. At least two receptors of asymmetric acetylcholinesterase are present at the synaptic basal lamina of Torpedo electric organ. Biochem Biophys Res Commun. 1998 Sep 18;250(2):312–317. doi: 10.1006/bbrc.1998.9303. [DOI] [PubMed] [Google Scholar]
- Clouet d'Orval B., d'Aubenton Carafa Y., Sirand-Pugnet P., Gallego M., Brody E., Marie J. RNA secondary structure repression of a muscle-specific exon in HeLa cell nuclear extracts. Science. 1991 Jun 28;252(5014):1823–1828. doi: 10.1126/science.2063195. [DOI] [PubMed] [Google Scholar]
- Deprez P. N., Inestrosa N. C. Two heparin-binding domains are present on the collagenic tail of asymmetric acetylcholinesterase. J Biol Chem. 1995 May 12;270(19):11043–11046. doi: 10.1074/jbc.270.19.11043. [DOI] [PubMed] [Google Scholar]
- Dominski Z., Kole R. Selection of splice sites in pre-mRNAs with short internal exons. Mol Cell Biol. 1991 Dec;11(12):6075–6083. doi: 10.1128/mcb.11.12.6075. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Donger C., Krejci E., Serradell A. P., Eymard B., Bon S., Nicole S., Chateau D., Gary F., Fardeau M., Massoulié J. Mutation in the human acetylcholinesterase-associated collagen gene, COLQ, is responsible for congenital myasthenic syndrome with end-plate acetylcholinesterase deficiency (Type Ic). Am J Hum Genet. 1998 Oct;63(4):967–975. doi: 10.1086/302059. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dölz R., Engel J., Kühn K. Folding of collagen IV. Eur J Biochem. 1988 Dec 15;178(2):357–366. doi: 10.1111/j.1432-1033.1988.tb14458.x. [DOI] [PubMed] [Google Scholar]
- Engel A. G., Lambert E. H., Gomez M. R. A new myasthenic syndrome with end-plate acetylcholinesterase deficiency, small nerve terminals, and reduced acetylcholine release. Ann Neurol. 1977 Apr;1(4):315–330. doi: 10.1002/ana.410010403. [DOI] [PubMed] [Google Scholar]
- Feng G., Krejci E., Molgo J., Cunningham J. M., Massoulié J., Sanes J. R. Genetic analysis of collagen Q: roles in acetylcholinesterase and butyrylcholinesterase assembly and in synaptic structure and function. J Cell Biol. 1999 Mar 22;144(6):1349–1360. doi: 10.1083/jcb.144.6.1349. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fujita R., Buraczynska M., Gieser L., Wu W., Forsythe P., Abrahamson M., Jacobson S. G., Sieving P. A., Andréasson S., Swaroop A. Analysis of the RPGR gene in 11 pedigrees with the retinitis pigmentosa type 3 genotype: paucity of mutations in the coding region but splice defects in two families. Am J Hum Genet. 1997 Sep;61(3):571–580. doi: 10.1086/515523. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grabowski P. J., Nasim F. U., Kuo H. C., Burch R. Combinatorial splicing of exon pairs by two-site binding of U1 small nuclear ribonucleoprotein particle. Mol Cell Biol. 1991 Dec;11(12):5919–5928. doi: 10.1128/mcb.11.12.5919. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hall Z. W. Multiple forms of acetylcholinesterase and their distribution in endplate and non-endplate regions of rat diaphragm muscle. J Neurobiol. 1973;4(4):343–361. doi: 10.1002/neu.480040404. [DOI] [PubMed] [Google Scholar]
- Higuchi M., Wong C., Kochhan L., Olek K., Aronis S., Kasper C. K., Kazazian H. H., Jr, Antonarakis S. E. Characterization of mutations in the factor VIII gene by direct sequencing of amplified genomic DNA. Genomics. 1990 Jan;6(1):65–71. doi: 10.1016/0888-7543(90)90448-4. [DOI] [PubMed] [Google Scholar]
- Hutchinson D. O., Walls T. J., Nakano S., Camp S., Taylor P., Harper C. M., Groover R. V., Peterson H. A., Jamieson D. G., Engel A. G. Congenital endplate acetylcholinesterase deficiency. Brain. 1993 Jun;116(Pt 3):633–653. doi: 10.1093/brain/116.3.633. [DOI] [PubMed] [Google Scholar]
- Katz B., Miledi R. The binding of acetylcholine to receptors and its removal from the synaptic cleft. J Physiol. 1973 Jun;231(3):549–574. doi: 10.1113/jphysiol.1973.sp010248. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ketterling R. P., Drost J. B., Scaringe W. A., Liao D. Z., Liu J. Z., Kasper C. K., Sommer S. S. Reported in vivo splice-site mutations in the factor IX gene: severity of splicing defects and a hypothesis for predicting deleterious splice donor mutations. Hum Mutat. 1999;13(3):221–231. doi: 10.1002/(SICI)1098-1004(1999)13:3<221::AID-HUMU6>3.0.CO;2-U. [DOI] [PubMed] [Google Scholar]
- Kister L., Domenjoud L., Gallinaro H., Monique J. A cis-acting selector of a 5' splice site. Cooperation between the sequence of the site and an upstream exonic element. J Biol Chem. 1993 Oct 15;268(29):21955–21961. [PubMed] [Google Scholar]
- Krawczak M., Reiss J., Cooper D. N. The mutational spectrum of single base-pair substitutions in mRNA splice junctions of human genes: causes and consequences. Hum Genet. 1992 Sep-Oct;90(1-2):41–54. doi: 10.1007/BF00210743. [DOI] [PubMed] [Google Scholar]
- Kuo H. C., Nasim F. H., Grabowski P. J. Control of alternative splicing by the differential binding of U1 small nuclear ribonucleoprotein particle. Science. 1991 Mar 1;251(4997):1045–1050. doi: 10.1126/science.1825520. [DOI] [PubMed] [Google Scholar]
- Lee B. S., Gunn R. B., Kopito R. R. Functional differences among nonerythroid anion exchangers expressed in a transfected human cell line. J Biol Chem. 1991 Jun 25;266(18):11448–11454. [PubMed] [Google Scholar]
- Massoulié J., Pezzementi L., Bon S., Krejci E., Vallette F. M. Molecular and cellular biology of cholinesterases. Prog Neurobiol. 1993 Jul;41(1):31–91. doi: 10.1016/0301-0082(93)90040-y. [DOI] [PubMed] [Google Scholar]
- Mount S. M., Pettersson I., Hinterberger M., Karmas A., Steitz J. A. The U1 small nuclear RNA-protein complex selectively binds a 5' splice site in vitro. Cell. 1983 Jun;33(2):509–518. doi: 10.1016/0092-8674(83)90432-4. [DOI] [PubMed] [Google Scholar]
- Nakai K., Sakamoto H. Construction of a novel database containing aberrant splicing mutations of mammalian genes. Gene. 1994 Apr 20;141(2):171–177. doi: 10.1016/0378-1119(94)90567-3. [DOI] [PubMed] [Google Scholar]
- Ohno K., Anlar B., Ozdirim E., Brengman J. M., DeBleecker J. L., Engel A. G. Myasthenic syndromes in Turkish kinships due to mutations in the acetylcholine receptor. Ann Neurol. 1998 Aug;44(2):234–241. doi: 10.1002/ana.410440214. [DOI] [PubMed] [Google Scholar]
- Ohno K., Brengman J., Tsujino A., Engel A. G. Human endplate acetylcholinesterase deficiency caused by mutations in the collagen-like tail subunit (ColQ) of the asymmetric enzyme. Proc Natl Acad Sci U S A. 1998 Aug 4;95(16):9654–9659. doi: 10.1073/pnas.95.16.9654. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ohno K., Hutchinson D. O., Milone M., Brengman J. M., Bouzat C., Sine S. M., Engel A. G. Congenital myasthenic syndrome caused by prolonged acetylcholine receptor channel openings due to a mutation in the M2 domain of the epsilon subunit. Proc Natl Acad Sci U S A. 1995 Jan 31;92(3):758–762. doi: 10.1073/pnas.92.3.758. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Prockop D. J., Kivirikko K. I. Collagens: molecular biology, diseases, and potentials for therapy. Annu Rev Biochem. 1995;64:403–434. doi: 10.1146/annurev.bi.64.070195.002155. [DOI] [PubMed] [Google Scholar]
- Purandare S. M., Lanyon W. G., Connor J. M. Characterisation of inherited and sporadic mutations in neurofibromatosis type-1. Hum Mol Genet. 1994 Jul;3(7):1109–1115. doi: 10.1093/hmg/3.7.1109. [DOI] [PubMed] [Google Scholar]
- Richard M. M., Erenberg G., Triggs-Raine B. L. An A-to-G mutation at the +3 position of intron 8 of the HEXA gene is associated with exon 8 skipping and Tay-Sachs disease. Biochem Mol Med. 1995 Jun;55(1):74–76. doi: 10.1006/bmme.1995.1035. [DOI] [PubMed] [Google Scholar]
- Roscigno R. F., Weiner M., Garcia-Blanco M. A. A mutational analysis of the polypyrimidine tract of introns. Effects of sequence differences in pyrimidine tracts on splicing. J Biol Chem. 1993 May 25;268(15):11222–11229. [PubMed] [Google Scholar]
- Selden R. F., Howie K. B., Rowe M. E., Goodman H. M., Moore D. D. Human growth hormone as a reporter gene in regulation studies employing transient gene expression. Mol Cell Biol. 1986 Sep;6(9):3173–3179. doi: 10.1128/mcb.6.9.3173. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shapiro M. B., Senapathy P. RNA splice junctions of different classes of eukaryotes: sequence statistics and functional implications in gene expression. Nucleic Acids Res. 1987 Sep 11;15(17):7155–7174. doi: 10.1093/nar/15.17.7155. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sirand-Pugnet P., Durosay P., Brody E., Marie J. An intronic (A/U)GGG repeat enhances the splicing of an alternative intron of the chicken beta-tropomyosin pre-mRNA. Nucleic Acids Res. 1995 Sep 11;23(17):3501–3507. doi: 10.1093/nar/23.17.3501. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tanaka K., Watakabe A., Shimura Y. Polypurine sequences within a downstream exon function as a splicing enhancer. Mol Cell Biol. 1994 Feb;14(2):1347–1354. doi: 10.1128/mcb.14.2.1347. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tsukahara T., Casciato C., Helfman D. M. Alternative splicing of beta-tropomyosin pre-mRNA: multiple cis-elements can contribute to the use of the 5'- and 3'-splice sites of the nonmuscle/smooth muscle exon 6. Nucleic Acids Res. 1994 Jun 25;22(12):2318–2325. doi: 10.1093/nar/22.12.2318. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang X., Poh-Fitzpatrick M., Chen T., Malavade K., Carriero D., Piomelli S. Systematic screening for RNA with skipped exons--splicing mutations of the ferrochelatase gene. Biochim Biophys Acta. 1995 Jun 9;1271(2-3):358–362. doi: 10.1016/0925-4439(95)00059-d. [DOI] [PubMed] [Google Scholar]
- Watakabe A., Tanaka K., Shimura Y. The role of exon sequences in splice site selection. Genes Dev. 1993 Mar;7(3):407–418. doi: 10.1101/gad.7.3.407. [DOI] [PubMed] [Google Scholar]
- Younkin S. G., Rosenstein C., Collins P. L., Rosenberry T. L. Cellular localization of the molecular forms of acetylcholinesterase in rat diaphragm. J Biol Chem. 1982 Nov 25;257(22):13630–13637. [PubMed] [Google Scholar]
- Zhang M. Q. Statistical features of human exons and their flanking regions. Hum Mol Genet. 1998 May;7(5):919–932. doi: 10.1093/hmg/7.5.919. [DOI] [PubMed] [Google Scholar]
- Zolezzi F., Valli M., Clementi M., Mammi I., Cetta G., Pignatti P. F., Mottes M. Mutation producing alternative splicing of exon 26 in the COL1A2 gene causes type IV osteogenesis imperfecta with intrafamilial clinical variability. Am J Med Genet. 1997 Aug 22;71(3):366–370. doi: 10.1002/(sici)1096-8628(19970822)71:3<366::aid-ajmg21>3.0.co;2-h. [DOI] [PubMed] [Google Scholar]