Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 Dec;77(6):3176–3188. doi: 10.1016/S0006-3495(99)77148-1

Electrostatic properties of membranes containing acidic lipids and adsorbed basic peptides: theory and experiment.

D Murray 1, A Arbuzova 1, G Hangyás-Mihályné 1, A Gambhir 1, N Ben-Tal 1, B Honig 1, S McLaughlin 1
PMCID: PMC1300588  PMID: 10585939

Abstract

The interaction of heptalysine with vesicles formed from mixtures of the acidic lipid phosphatidylserine (PS) and the zwitterionic lipid phosphatidylcholine (PC) was examined experimentally and theoretically. Three types of experiments showed that smeared charge theories (e.g., Gouy-Chapman-Stern) underestimate the membrane association when the peptide concentration is high. First, the zeta potential of PC/PS vesicles in 100 mM KCl solution increased more rapidly with heptalysine concentration (14.5 mV per decade) than predicted by a smeared charge theory (6.0 mV per decade). Second, changing the net surface charge density of vesicles by the same amount in two distinct ways produced dramatically different effects: the molar partition coefficient decreased 1000-fold when the mole percentage of PS was decreased from 17% to 4%, but decreased only 10-fold when the peptide concentration was increased to 1 microM. Third, high concentrations of basic peptides reversed the charge on PS and PC/PS vesicles. Calculations based on finite difference solutions to the Poisson-Boltzmann equation applied to atomic models of heptalysine and PC/PS membranes provide a molecular explanation for the observations: a peptide adsorbing to the membrane in the presence of other surface-adsorbed peptides senses a local potential more negative than the average potential. The biological implications of these "discreteness-of-charge" effects are discussed.

Full Text

The Full Text of this article is available as a PDF (777.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akashi K., Miyata H., Itoh H., Kinosita K., Jr Preparation of giant liposomes in physiological conditions and their characterization under an optical microscope. Biophys J. 1996 Dec;71(6):3242–3250. doi: 10.1016/S0006-3495(96)79517-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Allen L. A., Aderem A. Mechanisms of phagocytosis. Curr Opin Immunol. 1996 Feb;8(1):36–40. doi: 10.1016/s0952-7915(96)80102-6. [DOI] [PubMed] [Google Scholar]
  3. Allen L. H., Aderem A. A role for MARCKS, the alpha isozyme of protein kinase C and myosin I in zymosan phagocytosis by macrophages. J Exp Med. 1995 Sep 1;182(3):829–840. doi: 10.1084/jem.182.3.829. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ben-Tal N., Honig B., Miller C., McLaughlin S. Electrostatic binding of proteins to membranes. Theoretical predictions and experimental results with charybdotoxin and phospholipid vesicles. Biophys J. 1997 Oct;73(4):1717–1727. doi: 10.1016/S0006-3495(97)78203-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ben-Tal N., Honig B., Peitzsch R. M., Denisov G., McLaughlin S. Binding of small basic peptides to membranes containing acidic lipids: theoretical models and experimental results. Biophys J. 1996 Aug;71(2):561–575. doi: 10.1016/S0006-3495(96)79280-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bhatnagar R. S., Gordon J. I. Understanding covalent modifications of proteins by lipids: where cell biology and biophysics mingle. Trends Cell Biol. 1997 Jan;7(1):14–20. doi: 10.1016/S0962-8924(97)10044-7. [DOI] [PubMed] [Google Scholar]
  7. Buser C. A., Sigal C. T., Resh M. D., McLaughlin S. Membrane binding of myristylated peptides corresponding to the NH2 terminus of Src. Biochemistry. 1994 Nov 8;33(44):13093–13101. doi: 10.1021/bi00248a019. [DOI] [PubMed] [Google Scholar]
  8. Cafiso D., McLaughlin A., McLaughlin S., Winiski A. Measuring electrostatic potentials adjacent to membranes. Methods Enzymol. 1989;171:342–364. doi: 10.1016/s0076-6879(89)71019-3. [DOI] [PubMed] [Google Scholar]
  9. Chatelier R. C., Minton A. P. Adsorption of globular proteins on locally planar surfaces: models for the effect of excluded surface area and aggregation of adsorbed protein on adsorption equilibria. Biophys J. 1996 Nov;71(5):2367–2374. doi: 10.1016/S0006-3495(96)79430-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dell'Acqua M. L., Faux M. C., Thorburn J., Thorburn A., Scott J. D. Membrane-targeting sequences on AKAP79 bind phosphatidylinositol-4, 5-bisphosphate. EMBO J. 1998 Apr 15;17(8):2246–2260. doi: 10.1093/emboj/17.8.2246. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Denisov G., Wanaski S., Luan P., Glaser M., McLaughlin S. Binding of basic peptides to membranes produces lateral domains enriched in the acidic lipids phosphatidylserine and phosphatidylinositol 4,5-bisphosphate: an electrostatic model and experimental results. Biophys J. 1998 Feb;74(2 Pt 1):731–744. doi: 10.1016/S0006-3495(98)73998-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Epand R. M., Stevenson C., Bruins R., Schram V., Glaser M. The chirality of phosphatidylserine and the activation of protein kinase C. Biochemistry. 1998 Sep 1;37(35):12068–12073. doi: 10.1021/bi980527c. [DOI] [PubMed] [Google Scholar]
  13. Garnier L., Bowzard J. B., Wills J. W. Recent advances and remaining problems in HIV assembly. AIDS. 1998;12 (Suppl A):S5–16. [PubMed] [Google Scholar]
  14. Ghomashchi F., Zhang X., Liu L., Gelb M. H. Binding of prenylated and polybasic peptides to membranes: affinities and intervesicle exchange. Biochemistry. 1995 Sep 19;34(37):11910–11918. doi: 10.1021/bi00037a032. [DOI] [PubMed] [Google Scholar]
  15. Glaser M., Wanaski S., Buser C. A., Boguslavsky V., Rashidzada W., Morris A., Rebecchi M., Scarlata S. F., Runnels L. W., Prestwich G. D. Myristoylated alanine-rich C kinase substrate (MARCKS) produces reversible inhibition of phospholipase C by sequestering phosphatidylinositol 4,5-bisphosphate in lateral domains. J Biol Chem. 1996 Oct 18;271(42):26187–26193. doi: 10.1074/jbc.271.42.26187. [DOI] [PubMed] [Google Scholar]
  16. Hartsel S. C., Cafiso D. S. A test of discreteness-of-charge effects in phospholipid vesicles: measurements using paramagnetic amphiphiles. Biochemistry. 1986 Dec 16;25(25):8214–8219. doi: 10.1021/bi00373a014. [DOI] [PubMed] [Google Scholar]
  17. Heimburg T., Angerstein B., Marsh D. Binding of peripheral proteins to mixed lipid membranes: effect of lipid demixing upon binding. Biophys J. 1999 May;76(5):2575–2586. doi: 10.1016/S0006-3495(99)77410-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Heimburg T., Marsh D. Protein surface-distribution and protein-protein interactions in the binding of peripheral proteins to charged lipid membranes. Biophys J. 1995 Feb;68(2):536–546. doi: 10.1016/S0006-3495(95)80215-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Honig B., Nicholls A. Classical electrostatics in biology and chemistry. Science. 1995 May 26;268(5214):1144–1149. doi: 10.1126/science.7761829. [DOI] [PubMed] [Google Scholar]
  20. Kaplan J. M., Varmus H. E., Bishop J. M. The src protein contains multiple domains for specific attachment to membranes. Mol Cell Biol. 1990 Mar;10(3):1000–1009. doi: 10.1128/mcb.10.3.1000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kim J., Blackshear P. J., Johnson J. D., McLaughlin S. Phosphorylation reverses the membrane association of peptides that correspond to the basic domains of MARCKS and neuromodulin. Biophys J. 1994 Jul;67(1):227–237. doi: 10.1016/S0006-3495(94)80473-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kim J., Mosior M., Chung L. A., Wu H., McLaughlin S. Binding of peptides with basic residues to membranes containing acidic phospholipids. Biophys J. 1991 Jul;60(1):135–148. doi: 10.1016/S0006-3495(91)82037-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kleinschmidt J. H., Marsh D. Spin-label electron spin resonance studies on the interactions of lysine peptides with phospholipid membranes. Biophys J. 1997 Nov;73(5):2546–2555. doi: 10.1016/S0006-3495(97)78283-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Knoblich J. A., Jan L. Y., Jan Y. N. The N terminus of the Drosophila Numb protein directs membrane association and actin-dependent asymmetric localization. Proc Natl Acad Sci U S A. 1997 Nov 25;94(24):13005–13010. doi: 10.1073/pnas.94.24.13005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Kwok R., Evans E. Thermoelasticity of large lecithin bilayer vesicles. Biophys J. 1981 Sep;35(3):637–652. doi: 10.1016/S0006-3495(81)84817-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Leventis R., Silvius J. R. Lipid-binding characteristics of the polybasic carboxy-terminal sequence of K-ras4B. Biochemistry. 1998 May 19;37(20):7640–7648. doi: 10.1021/bi973077h. [DOI] [PubMed] [Google Scholar]
  27. Liu J., Oh P., Horner T., Rogers R. A., Schnitzer J. E. Organized endothelial cell surface signal transduction in caveolae distinct from glycosylphosphatidylinositol-anchored protein microdomains. J Biol Chem. 1997 Mar 14;272(11):7211–7222. doi: 10.1074/jbc.272.11.7211. [DOI] [PubMed] [Google Scholar]
  28. Liu Y., Casey L., Pike L. J. Compartmentalization of phosphatidylinositol 4,5-bisphosphate in low-density membrane domains in the absence of caveolin. Biochem Biophys Res Commun. 1998 Apr 28;245(3):684–690. doi: 10.1006/bbrc.1998.8329. [DOI] [PubMed] [Google Scholar]
  29. Martin T. F. Phosphoinositide lipids as signaling molecules: common themes for signal transduction, cytoskeletal regulation, and membrane trafficking. Annu Rev Cell Dev Biol. 1998;14:231–264. doi: 10.1146/annurev.cellbio.14.1.231. [DOI] [PubMed] [Google Scholar]
  30. McIlroy B. K., Walters J. D., Johnson J. D. A continuous fluorescence assay for protein kinase C. Anal Biochem. 1991 May 15;195(1):148–152. doi: 10.1016/0003-2697(91)90310-p. [DOI] [PubMed] [Google Scholar]
  31. McLaughlin S., Aderem A. The myristoyl-electrostatic switch: a modulator of reversible protein-membrane interactions. Trends Biochem Sci. 1995 Jul;20(7):272–276. doi: 10.1016/s0968-0004(00)89042-8. [DOI] [PubMed] [Google Scholar]
  32. McLaughlin S., Mulrine N., Gresalfi T., Vaio G., McLaughlin A. Adsorption of divalent cations to bilayer membranes containing phosphatidylserine. J Gen Physiol. 1981 Apr;77(4):445–473. doi: 10.1085/jgp.77.4.445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. McLaughlin S. The electrostatic properties of membranes. Annu Rev Biophys Biophys Chem. 1989;18:113–136. doi: 10.1146/annurev.bb.18.060189.000553. [DOI] [PubMed] [Google Scholar]
  34. Mosior M., McLaughlin S. Binding of basic peptides to acidic lipids in membranes: effects of inserting alanine(s) between the basic residues. Biochemistry. 1992 Feb 18;31(6):1767–1773. doi: 10.1021/bi00121a026. [DOI] [PubMed] [Google Scholar]
  35. Mosior M., McLaughlin S. Peptides that mimic the pseudosubstrate region of protein kinase C bind to acidic lipids in membranes. Biophys J. 1991 Jul;60(1):149–159. doi: 10.1016/S0006-3495(91)82038-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Mouritsen O. G., Jørgensen K. Small-scale lipid-membrane structure: simulation versus experiment. Curr Opin Struct Biol. 1997 Aug;7(4):518–527. doi: 10.1016/s0959-440x(97)80116-9. [DOI] [PubMed] [Google Scholar]
  37. Murray D., Ben-Tal N., Honig B., McLaughlin S. Electrostatic interaction of myristoylated proteins with membranes: simple physics, complicated biology. Structure. 1997 Aug 15;5(8):985–989. doi: 10.1016/s0969-2126(97)00251-7. [DOI] [PubMed] [Google Scholar]
  38. Murray D., Hermida-Matsumoto L., Buser C. A., Tsang J., Sigal C. T., Ben-Tal N., Honig B., Resh M. D., McLaughlin S. Electrostatics and the membrane association of Src: theory and experiment. Biochemistry. 1998 Feb 24;37(8):2145–2159. doi: 10.1021/bi972012b. [DOI] [PubMed] [Google Scholar]
  39. Möhwald H. Phospholipid and phospholipid-protein monolayers at the air/water interface. Annu Rev Phys Chem. 1990;41:441–476. doi: 10.1146/annurev.pc.41.100190.002301. [DOI] [PubMed] [Google Scholar]
  40. Needham D. Measurement of interbilayer adhesion energies. Methods Enzymol. 1993;220:111–129. doi: 10.1016/0076-6879(93)20078-h. [DOI] [PubMed] [Google Scholar]
  41. Newton A. C., Johnson J. E. Protein kinase C: a paradigm for regulation of protein function by two membrane-targeting modules. Biochim Biophys Acta. 1998 Aug 21;1376(2):155–172. doi: 10.1016/s0304-4157(98)00003-3. [DOI] [PubMed] [Google Scholar]
  42. Peitzsch R. M., Eisenberg M., Sharp K. A., McLaughlin S. Calculations of the electrostatic potential adjacent to model phospholipid bilayers. Biophys J. 1995 Mar;68(3):729–738. doi: 10.1016/S0006-3495(95)80253-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Pitcher J. A., Freedman N. J., Lefkowitz R. J. G protein-coupled receptor kinases. Annu Rev Biochem. 1998;67:653–692. doi: 10.1146/annurev.biochem.67.1.653. [DOI] [PubMed] [Google Scholar]
  44. Prendergast F. G., Meyer M., Carlson G. L., Iida S., Potter J. D. Synthesis, spectral properties, and use of 6-acryloyl-2-dimethylaminonaphthalene (Acrylodan). A thiol-selective, polarity-sensitive fluorescent probe. J Biol Chem. 1983 Jun 25;258(12):7541–7544. [PubMed] [Google Scholar]
  45. Rao V. D., Misra S., Boronenkov I. V., Anderson R. A., Hurley J. H. Structure of type IIbeta phosphatidylinositol phosphate kinase: a protein kinase fold flattened for interfacial phosphorylation. Cell. 1998 Sep 18;94(6):829–839. doi: 10.1016/s0092-8674(00)81741-9. [DOI] [PubMed] [Google Scholar]
  46. Resh M. D. Regulation of cellular signalling by fatty acid acylation and prenylation of signal transduction proteins. Cell Signal. 1996 Sep;8(6):403–412. doi: 10.1016/s0898-6568(96)00088-5. [DOI] [PubMed] [Google Scholar]
  47. Rizo J., Südhof T. C. C2-domains, structure and function of a universal Ca2+-binding domain. J Biol Chem. 1998 Jun 26;273(26):15879–15882. doi: 10.1074/jbc.273.26.15879. [DOI] [PubMed] [Google Scholar]
  48. Rosen A., Keenan K. F., Thelen M., Nairn A. C., Aderem A. Activation of protein kinase C results in the displacement of its myristoylated, alanine-rich substrate from punctate structures in macrophage filopodia. J Exp Med. 1990 Oct 1;172(4):1211–1215. doi: 10.1084/jem.172.4.1211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Seykora J. T., Myat M. M., Allen L. A., Ravetch J. V., Aderem A. Molecular determinants of the myristoyl-electrostatic switch of MARCKS. J Biol Chem. 1996 Aug 2;271(31):18797–18802. doi: 10.1074/jbc.271.31.18797. [DOI] [PubMed] [Google Scholar]
  50. Sigal C. T., Zhou W., Buser C. A., McLaughlin S., Resh M. D. Amino-terminal basic residues of Src mediate membrane binding through electrostatic interaction with acidic phospholipids. Proc Natl Acad Sci U S A. 1994 Dec 6;91(25):12253–12257. doi: 10.1073/pnas.91.25.12253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Sutton R. B., Fasshauer D., Jahn R., Brunger A. T. Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 A resolution. Nature. 1998 Sep 24;395(6700):347–353. doi: 10.1038/26412. [DOI] [PubMed] [Google Scholar]
  52. Swierczynski S. L., Blackshear P. J. Myristoylation-dependent and electrostatic interactions exert independent effects on the membrane association of the myristoylated alanine-rich protein kinase C substrate protein in intact cells. J Biol Chem. 1996 Sep 20;271(38):23424–23430. doi: 10.1074/jbc.271.38.23424. [DOI] [PubMed] [Google Scholar]
  53. Toner M., Vaio G., McLaughlin A., McLaughlin S. Adsorption of cations to phosphatidylinositol 4,5-bisphosphate. Biochemistry. 1988 Sep 20;27(19):7435–7443. doi: 10.1021/bi00419a039. [DOI] [PubMed] [Google Scholar]
  54. Winiski A. P., McLaughlin A. C., McDaniel R. V., Eisenberg M., McLaughlin S. An experimental test of the discreteness-of-charge effect in positive and negative lipid bilayers. Biochemistry. 1986 Dec 16;25(25):8206–8214. doi: 10.1021/bi00373a013. [DOI] [PubMed] [Google Scholar]
  55. Yang L., Glaser M. Formation of membrane domains during the activation of protein kinase C. Biochemistry. 1996 Nov 5;35(44):13966–13974. doi: 10.1021/bi9610008. [DOI] [PubMed] [Google Scholar]
  56. Yang L., Glaser M. Membrane domains containing phosphatidylserine and substrate can be important for the activation of protein kinase C. Biochemistry. 1995 Feb 7;34(5):1500–1506. doi: 10.1021/bi00005a005. [DOI] [PubMed] [Google Scholar]
  57. Zhou W., Parent L. J., Wills J. W., Resh M. D. Identification of a membrane-binding domain within the amino-terminal region of human immunodeficiency virus type 1 Gag protein which interacts with acidic phospholipids. J Virol. 1994 Apr;68(4):2556–2569. doi: 10.1128/jvi.68.4.2556-2569.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES