Skip to main content
Genetics logoLink to Genetics
. 2001 Feb;157(2):667–677. doi: 10.1093/genetics/157.2.667

Molecular evolution of duplicated amylase gene regions in Drosophila melanogaster: evidence of positive selection in the coding regions and selective constraints in the cis-regulatory regions.

H Araki 1, N Inomata 1, T Yamazaki 1
PMCID: PMC1461509  PMID: 11156987

Abstract

In this study, we randomly sampled Drosophila melanogaster from Japanese and Kenyan natural populations. We sequenced duplicated (proximal and distal) Amy gene regions to test whether the patterns of polymorphism were consistent with neutral molecular evolution. F(st) between the two geographically distant populations, estimated from Amy gene regions, was 0.084, smaller than reported values for other loci, comparing African and Asian populations. Furthermore, little genetic differentiation was found at a microsatellite locus (DROYANETSB) in these samples (G'st = -0.018). The results of several tests (Tajima's, Fu and Li's, and Wall's tests) were not significantly different from neutrality. However, a significantly higher level of fixed replacement substitutions was detected by a modified McDonald and Kreitman test for both populations. This indicates that positive selection occurred during or immediately after the speciation of D. melanogaster. Sliding-window analysis showed that the proximal region 1, a part of the proximal 5' flanking region, was conserved between D. melanogaster and its sibling species, D. simulans. An HKA test was significant when the proximal region 1 was compared with the 5' flanking region of Alcohol dehydrogenase (Adh), indicating a severe selective constraint on the Amy proximal region 1. These results suggest that natural selection has played an important role in the molecular evolution of Amy gene regions in D. melanogaster.

Full Text

The Full Text of this article is available as a PDF (256.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abraham I., Doane W. W. Genetic regulation of tissue-specific expression of amylase structural genes in Drosophila melanogaster. Proc Natl Acad Sci U S A. 1978 Sep;75(9):4446–4450. doi: 10.1073/pnas.75.9.4446. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bahn E. Crossing over in the chromosomal region determining amylase isozymes in Drosophila melanogaster. Hereditas. 1967;58(1):1–12. doi: 10.1111/j.1601-5223.1967.tb02138.x. [DOI] [PubMed] [Google Scholar]
  3. Begun D. J., Aquadro C. F. Molecular variation at the vermilion locus in geographically diverse populations of Drosophila melanogaster and D. simulans. Genetics. 1995 Jul;140(3):1019–1032. doi: 10.1093/genetics/140.3.1019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Benkel B. F., Hickey D. A. Glucose Repression of Amylase Gene Expression in DROSOPHILA MELANOGASTER. Genetics. 1986 Sep;114(1):137–144. doi: 10.1093/genetics/114.1.137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Betrán E., Rozas J., Navarro A., Barbadilla A. The estimation of the number and the length distribution of gene conversion tracts from population DNA sequence data. Genetics. 1997 May;146(1):89–99. doi: 10.1093/genetics/146.1.89. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Boer P. H., Hickey D. A. The alpha-amylase gene in Drosophila melanogaster: nucleotide sequence, gene structure and expression motifs. Nucleic Acids Res. 1986 Nov 11;14(21):8399–8411. doi: 10.1093/nar/14.21.8399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cadigan K. M., Grossniklaus U., Gehring W. J. Functional redundancy: the respective roles of the two sloppy paired genes in Drosophila segmentation. Proc Natl Acad Sci U S A. 1994 Jul 5;91(14):6324–6328. doi: 10.1073/pnas.91.14.6324. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. David J. R., Capy P. Genetic variation of Drosophila melanogaster natural populations. Trends Genet. 1988 Apr;4(4):106–111. doi: 10.1016/0168-9525(88)90098-4. [DOI] [PubMed] [Google Scholar]
  9. De Jong G., Scharloo W. Environmental determination of selective significance or neutrality of amylase variants in Drosophila melanogaster. Genetics. 1976 Sep;84(1):77–94. doi: 10.1093/genetics/84.1.77. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fay J. C., Wu C. I. Hitchhiking under positive Darwinian selection. Genetics. 2000 Jul;155(3):1405–1413. doi: 10.1093/genetics/155.3.1405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fu Y. X., Li W. H. Statistical tests of neutrality of mutations. Genetics. 1993 Mar;133(3):693–709. doi: 10.1093/genetics/133.3.693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Goldstein D. B., Clark A. G. Microsatellite variation in North American populations of Drosophila melanogaster. Nucleic Acids Res. 1995 Oct 11;23(19):3882–3886. doi: 10.1093/nar/23.19.3882. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hale L. R., Singh R. S. A comprehensive study of genic variation in natural populations of Drosophila melanogaster. IV. Mitochondrial DNA variation and the role of history vs. selection in the genetic structure of geographic populations. Genetics. 1991 Sep;129(1):103–117. doi: 10.1093/genetics/129.1.103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hickey D. A., Bally-Cuif L., Abukashawa S., Payant V., Benkel B. F. Concerted evolution of duplicated protein-coding genes in Drosophila. Proc Natl Acad Sci U S A. 1991 Mar 1;88(5):1611–1615. doi: 10.1073/pnas.88.5.1611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hudson R. R. Estimating the recombination parameter of a finite population model without selection. Genet Res. 1987 Dec;50(3):245–250. doi: 10.1017/s0016672300023776. [DOI] [PubMed] [Google Scholar]
  16. Hudson R. R., Kreitman M., Aguadé M. A test of neutral molecular evolution based on nucleotide data. Genetics. 1987 May;116(1):153–159. doi: 10.1093/genetics/116.1.153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hudson R. R., Slatkin M., Maddison W. P. Estimation of levels of gene flow from DNA sequence data. Genetics. 1992 Oct;132(2):583–589. doi: 10.1093/genetics/132.2.583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Inomata N., Kanda K., Cariou M. L., Tachida H., Yamazaki T. Evolution of the response patterns to dietary carbohydrates and the developmental differentiation of gene expression of alpha-amylase in Drosophila. J Mol Evol. 1995 Dec;41(6):1076–1084. doi: 10.1007/BF00173189. [DOI] [PubMed] [Google Scholar]
  19. Inomata N., Shibata H., Okuyama E., Yamazaki T. Evolutionary relationships and sequence variation of alpha-amylase variants encoded by duplicated genes in the Amy locus of Drosophila melanogaster. Genetics. 1995 Sep;141(1):237–244. doi: 10.1093/genetics/141.1.237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Inomata N., Yamazaki T. Evolution of nucleotide substitutions and gene regulation in the amylase multigenes in Drosophila kikkawai and its sibling species. Mol Biol Evol. 2000 Apr;17(4):601–615. doi: 10.1093/oxfordjournals.molbev.a026339. [DOI] [PubMed] [Google Scholar]
  21. Klarenberg A. J., Visser A. J., Willemse M. F., Scharloo W. Genetic Localization and Action of Regulatory Genes and Elements for Tissue-Specific Expression of alpha-Amylase in DROSOPHILA MELANOGASTER. Genetics. 1986 Dec;114(4):1131–1145. doi: 10.1093/genetics/114.4.1131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kreitman M. E., Aguadé M. Excess polymorphism at the Adh locus in Drosophila melanogaster. Genetics. 1986 Sep;114(1):93–110. doi: 10.1093/genetics/114.1.93. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lai Z. C., Rubin G. M. Negative control of photoreceptor development in Drosophila by the product of the yan gene, an ETS domain protein. Cell. 1992 Aug 21;70(4):609–620. doi: 10.1016/0092-8674(92)90430-k. [DOI] [PubMed] [Google Scholar]
  24. Langley C. H., Shrimpton A. E., Yamazaki T., Miyashita N., Matsuo Y., Aquadro C. F. Naturally occurring variation in the restriction map of the amy region of Drosophila melanogaster. Genetics. 1988 Jul;119(3):619–629. doi: 10.1093/genetics/119.3.619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Magoulas C., Bally-Cuif L., Loverre-Chyurlia A., Benkel B., Hickey D. A short 5'-flanking region mediates glucose repression of amylase gene expression in Drosophila melanogaster. Genetics. 1993 Jun;134(2):507–515. doi: 10.1093/genetics/134.2.507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Matsuo Y., Yamazaki T. Genetic Analysis of Natural Populations of DROSOPHILA MELANOGASTER in Japan. IV. Natural Selection on the Inducibility, but Not on the Structural Genes, of Amylase Loci. Genetics. 1984 Dec;108(4):879–896. doi: 10.1093/genetics/108.4.879. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. McDonald J. H., Kreitman M. Adaptive protein evolution at the Adh locus in Drosophila. Nature. 1991 Jun 20;351(6328):652–654. doi: 10.1038/351652a0. [DOI] [PubMed] [Google Scholar]
  28. Moriyama E. N., Powell J. R. Intraspecific nuclear DNA variation in Drosophila. Mol Biol Evol. 1996 Jan;13(1):261–277. doi: 10.1093/oxfordjournals.molbev.a025563. [DOI] [PubMed] [Google Scholar]
  29. Ohta T. Allelic and nonallelic homology of a supergene family. Proc Natl Acad Sci U S A. 1982 May;79(10):3251–3254. doi: 10.1073/pnas.79.10.3251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Okuyama E., Shibata H., Tachida H., Yamazaki T. Molecular evolution of the 5'-flanking regions of the duplicated Amy genes in Drosophila melanogaster species subgroup. Mol Biol Evol. 1996 Apr;13(4):574–583. doi: 10.1093/oxfordjournals.molbev.a025617. [DOI] [PubMed] [Google Scholar]
  31. Okuyama E., Tachida H., Yamazaki T. Molecular analysis of the intergenic region of the duplicated Amy genes of Drosophila melanogaster and Drosophila teissieri. J Mol Evol. 1997 Jul;45(1):32–42. doi: 10.1007/pl00006196. [DOI] [PubMed] [Google Scholar]
  32. Powell J. R., Andjelković M. Population genetics of Drosophila amylase. IV. Selection in laboratory populations maintained on different carbohydrates. Genetics. 1983 Apr;103(4):675–689. doi: 10.1093/genetics/103.4.675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Rozas J., Rozas R. DnaSP version 3: an integrated program for molecular population genetics and molecular evolution analysis. Bioinformatics. 1999 Feb;15(2):174–175. doi: 10.1093/bioinformatics/15.2.174. [DOI] [PubMed] [Google Scholar]
  34. Saiki R. K., Scharf S., Faloona F., Mullis K. B., Horn G. T., Erlich H. A., Arnheim N. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science. 1985 Dec 20;230(4732):1350–1354. doi: 10.1126/science.2999980. [DOI] [PubMed] [Google Scholar]
  35. Schlötterer C., Ritter R., Harr B., Brem G. High mutation rate of a long microsatellite allele in Drosophila melanogaster provides evidence for allele-specific mutation rates. Mol Biol Evol. 1998 Oct;15(10):1269–1274. doi: 10.1093/oxfordjournals.molbev.a025855. [DOI] [PubMed] [Google Scholar]
  36. Shibata H., Yamazaki T. A comparative study of the enzymological features of alpha-amylase in the Drosophila melanogaster species subgroup. Jpn J Genet. 1994 Jun;69(3):251–258. doi: 10.1266/jjg.69.251. [DOI] [PubMed] [Google Scholar]
  37. Shibata H., Yamazaki T. Molecular evolution of the duplicated Amy locus in the Drosophila melanogaster species subgroup: concerted evolution only in the coding region and an excess of nonsynonymous substitutions in speciation. Genetics. 1995 Sep;141(1):223–236. doi: 10.1093/genetics/141.1.223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Singh R. S., Hickey D. A., David J. Genetic Differentiation between Geographically Distant Populations of DROSOPHILA MELANOGASTER. Genetics. 1982 Jun;101(2):235–256. doi: 10.1093/genetics/101.2.235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics. 1989 Nov;123(3):585–595. doi: 10.1093/genetics/123.3.585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997 Dec 15;25(24):4876–4882. doi: 10.1093/nar/25.24.4876. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Van de Peer Y., De Wachter R. TREECON for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput Appl Biosci. 1994 Sep;10(5):569–570. doi: 10.1093/bioinformatics/10.5.569. [DOI] [PubMed] [Google Scholar]
  42. Yamazaki T., Matsuo Y. Genetic Analysis of Natural Populations of DROSOPHILA MELANOGASTER in Japan. III. Genetic Variability of Inducing Factors of Amylase and Fitness. Genetics. 1984 Sep;108(1):223–235. doi: 10.1093/genetics/108.1.223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Yardley D. G., Anderson W. W., Schaffer H. E. Gene Frequency Changes at the alpha-Amylase Locus in Experimental Populations of DROSOPHILA PSEUDOOBSCURA. Genetics. 1977 Oct;87(2):357–369. doi: 10.1093/genetics/87.2.357. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES