Abstract
Quantum-chemical methods are used to shed light on the functional role of residues involved in the resistance of HIV-1 reverse transcriptase against nucleoside-analog drugs. Ab initio molecular dynamics simulations are carried out for models representing the adduct between the triphosphate substrate and the nucleoside binding site. The triphosphate is considered either deprotonated or protonated at the gamma-position. Although the protonated form already experiences large rearrangements in the ps time scale, the fully deprotonated state exhibits a previously unrecognized low-barrier hydrogen bond between Lys65 and gamma-phosphate. Absence of this interaction in Lys65-->Arg HIV-1 RT might play a prominent role in the resistance of this mutant for nucleoside analogs (Gu Z et al., 1994b, Antimicrob Agents Chemother 38:275-281; Zhang D et al., 1994, Antimicrob Agents Chemother 38:282-287). Water molecules present in the active site, not detected in the X-ray structure, form a complex H-bond network. Among these waters, one may be crucial for substrate recognition as it bridges Gln151 and Arg72 with the beta-phosphate. Absence of this stabilizing interaction in Gln151-->Met HIV-1 RT mutant may be a key factor for the known drug resistance of this mutant toward dideoxy-type drugs and AZT (Shirasaka T et al., 1995, Proc Natl Acad Sci USA 92:2398-2402: Iversen AK et al., 1996, J Virol 70:1086-1090).
Full Text
The Full Text of this article is available as a PDF (4.0 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alber F., Kuonen O., Scapozza L., Folkers G., Carloni P. Density functional studies on herpes simplex virus type 1 thymidine kinase-substrate interactions: the role of Tyr-172 and Met-128 in thymine fixation. Proteins. 1998 Jun 1;31(4):453–459. doi: 10.1002/(sici)1097-0134(19980601)31:4<453::aid-prot11>3.0.co;2-e. [DOI] [PubMed] [Google Scholar]
- Arion D., Borkow G., Gu Z., Wainberg M. A., Parniak M. A. The K65R mutation confers increased DNA polymerase processivity to HIV-1 reverse transcriptase. J Biol Chem. 1996 Aug 16;271(33):19860–19864. doi: 10.1074/jbc.271.33.19860. [DOI] [PubMed] [Google Scholar]
- Barber A. M., Hizi A., Maizel J. V., Jr, Hughes S. H. HIV-1 reverse transcriptase: structure predictions for the polymerase domain. AIDS Res Hum Retroviruses. 1990 Sep;6(9):1061–1072. doi: 10.1089/aid.1990.6.1061. [DOI] [PubMed] [Google Scholar]
- Barnett RN, Landman U. Born-Oppenheimer molecular-dynamics simulations of finite systems: Structure and dynamics of (H2O)2. Phys Rev B Condens Matter. 1993 Jul 15;48(4):2081–2097. doi: 10.1103/physrevb.48.2081. [DOI] [PubMed] [Google Scholar]
- Becke AD. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A Gen Phys. 1988 Sep 15;38(6):3098–3100. doi: 10.1103/physreva.38.3098. [DOI] [PubMed] [Google Scholar]
- Beveridge A. J., Heywood G. C. A quantum mechanical study of the active site of aspartic proteinases. Biochemistry. 1993 Apr 6;32(13):3325–3333. doi: 10.1021/bi00064a015. [DOI] [PubMed] [Google Scholar]
- Beveridge A. A theoretical study of torsional flexibility in the active site of aspartic proteinases: implications for catalysis. Proteins. 1996 Mar;24(3):322–334. doi: 10.1002/(SICI)1097-0134(199603)24:3<322::AID-PROT5>3.0.CO;2-I. [DOI] [PubMed] [Google Scholar]
- Boucher C. A., Cammack N., Schipper P., Schuurman R., Rouse P., Wainberg M. A., Cameron J. M. High-level resistance to (-) enantiomeric 2'-deoxy-3'-thiacytidine in vitro is due to one amino acid substitution in the catalytic site of human immunodeficiency virus type 1 reverse transcriptase. Antimicrob Agents Chemother. 1993 Oct;37(10):2231–2234. doi: 10.1128/aac.37.10.2231. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boyer P. L., Ferris A. L., Clark P., Whitmer J., Frank P., Tantillo C., Arnold E., Hughes S. H. Mutational analysis of the fingers and palm subdomains of human immunodeficiency virus type-1 (HIV-1) reverse transcriptase. J Mol Biol. 1994 Oct 28;243(3):472–483. doi: 10.1006/jmbi.1994.1673. [DOI] [PubMed] [Google Scholar]
- Boyer P. L., Hughes S. H. Analysis of mutations at position 184 in reverse transcriptase of human immunodeficiency virus type 1. Antimicrob Agents Chemother. 1995 Jul;39(7):1624–1628. doi: 10.1128/aac.39.7.1624. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Car R, Parrinello M. Unified approach for molecular dynamics and density-functional theory. Phys Rev Lett. 1985 Nov 25;55(22):2471–2474. doi: 10.1103/PhysRevLett.55.2471. [DOI] [PubMed] [Google Scholar]
- Carroll S. S., Geib J., Olsen D. B., Stahlhut M., Shafer J. A., Kuo L. C. Sensitivity of HIV-1 reverse transcriptase and its mutants to inhibition by azidothymidine triphosphate. Biochemistry. 1994 Mar 1;33(8):2113–2120. doi: 10.1021/bi00174a018. [DOI] [PubMed] [Google Scholar]
- Cheney J., Cheney B. V., Richards W. G. Calculation of NH...pi hydrogen bond energies in basic pancreatic trypsin inhibitor. Biochim Biophys Acta. 1988 Apr 28;954(1):137–139. doi: 10.1016/0167-4838(88)90063-5. [DOI] [PubMed] [Google Scholar]
- Cheng Y. C., Dutschman G. E., Bastow K. F., Sarngadharan M. G., Ting R. Y. Human immunodeficiency virus reverse transcriptase. General properties and its interactions with nucleoside triphosphate analogs. J Biol Chem. 1987 Feb 15;262(5):2187–2189. [PubMed] [Google Scholar]
- Cleland W. W. Low-barrier hydrogen bonds and low fractionation factor bases in enzymatic reactions. Biochemistry. 1992 Jan 21;31(2):317–319. doi: 10.1021/bi00117a001. [DOI] [PubMed] [Google Scholar]
- De Clercq E. HIV resistance to reverse transcriptase inhibitors. Biochem Pharmacol. 1994 Jan 20;47(2):155–169. doi: 10.1016/0006-2952(94)90001-9. [DOI] [PubMed] [Google Scholar]
- De Santis L., Carloni P. Serine proteases: an ab initio molecular dynamics study. Proteins. 1999 Dec 1;37(4):611–618. [PubMed] [Google Scholar]
- Frankel A. D., Young J. A. HIV-1: fifteen proteins and an RNA. Annu Rev Biochem. 1998;67:1–25. doi: 10.1146/annurev.biochem.67.1.1. [DOI] [PubMed] [Google Scholar]
- Gao Q., Gu Z., Parniak M. A., Cameron J., Cammack N., Boucher C., Wainberg M. A. The same mutation that encodes low-level human immunodeficiency virus type 1 resistance to 2',3'-dideoxyinosine and 2',3'-dideoxycytidine confers high-level resistance to the (-) enantiomer of 2',3'-dideoxy-3'-thiacytidine. Antimicrob Agents Chemother. 1993 Jun;37(6):1390–1392. doi: 10.1128/aac.37.6.1390. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goody R. S., Müller B., Restle T. Factors contributing to the inhibition of HIV reverse transcriptase by chain-terminating nucleotides in vitro and in vivo. FEBS Lett. 1991 Oct 7;291(1):1–5. doi: 10.1016/0014-5793(91)81089-q. [DOI] [PubMed] [Google Scholar]
- Gu Z., Fletcher R. S., Arts E. J., Wainberg M. A., Parniak M. A. The K65R mutant reverse transcriptase of HIV-1 cross-resistant to 2', 3'-dideoxycytidine, 2',3'-dideoxy-3'-thiacytidine, and 2',3'-dideoxyinosine shows reduced sensitivity to specific dideoxynucleoside triphosphate inhibitors in vitro. J Biol Chem. 1994 Nov 11;269(45):28118–28122. [PubMed] [Google Scholar]
- Gu Z., Gao Q., Fang H., Salomon H., Parniak M. A., Goldberg E., Cameron J., Wainberg M. A. Identification of a mutation at codon 65 in the IKKK motif of reverse transcriptase that encodes human immunodeficiency virus resistance to 2',3'-dideoxycytidine and 2',3'-dideoxy-3'-thiacytidine. Antimicrob Agents Chemother. 1994 Feb;38(2):275–281. doi: 10.1128/aac.38.2.275. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Herdewijn P. A. Novel nucleoside strategies for anti-HIV and anti-HSV therapy. Antiviral Res. 1992 Jul 1;19(1):1–14. doi: 10.1016/0166-3542(92)90052-7. [DOI] [PubMed] [Google Scholar]
- Huang H., Chopra R., Verdine G. L., Harrison S. C. Structure of a covalently trapped catalytic complex of HIV-1 reverse transcriptase: implications for drug resistance. Science. 1998 Nov 27;282(5394):1669–1675. doi: 10.1126/science.282.5394.1669. [DOI] [PubMed] [Google Scholar]
- Iversen A. K., Shafer R. W., Wehrly K., Winters M. A., Mullins J. I., Chesebro B., Merigan T. C. Multidrug-resistant human immunodeficiency virus type 1 strains resulting from combination antiretroviral therapy. J Virol. 1996 Feb;70(2):1086–1090. doi: 10.1128/jvi.70.2.1086-1090.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kaushik N., Rege N., Yadav P. N., Sarafianos S. G., Modak M. J., Pandey V. N. Biochemical analysis of catalytically crucial aspartate mutants of human immunodeficiency virus type 1 reverse transcriptase. Biochemistry. 1996 Sep 10;35(36):11536–11546. doi: 10.1021/bi960364x. [DOI] [PubMed] [Google Scholar]
- Kellam P., Boucher C. A., Larder B. A. Fifth mutation in human immunodeficiency virus type 1 reverse transcriptase contributes to the development of high-level resistance to zidovudine. Proc Natl Acad Sci U S A. 1992 Mar 1;89(5):1934–1938. doi: 10.1073/pnas.89.5.1934. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Krebs R., Immendörfer U., Thrall S. H., Wöhrl B. M., Goody R. S. Single-step kinetics of HIV-1 reverse transcriptase mutants responsible for virus resistance to nucleoside inhibitors zidovudine and 3-TC. Biochemistry. 1997 Aug 19;36(33):10292–10300. doi: 10.1021/bi970512z. [DOI] [PubMed] [Google Scholar]
- Larder B. A., Kemp S. D. Multiple mutations in HIV-1 reverse transcriptase confer high-level resistance to zidovudine (AZT). Science. 1989 Dec 1;246(4934):1155–1158. doi: 10.1126/science.2479983. [DOI] [PubMed] [Google Scholar]
- Larder B. A., Purifoy D. J., Powell K. L., Darby G. Site-specific mutagenesis of AIDS virus reverse transcriptase. 1987 Jun 25-Jul 1Nature. 327(6124):716–717. doi: 10.1038/327716a0. [DOI] [PubMed] [Google Scholar]
- Larder B. A., Stammers D. K. Closing in on HIV drug resistance. Nat Struct Biol. 1999 Feb;6(2):103–106. doi: 10.1038/5787. [DOI] [PubMed] [Google Scholar]
- Lee C, Yang W, Parr RG. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B Condens Matter. 1988 Jan 15;37(2):785–789. doi: 10.1103/physrevb.37.785. [DOI] [PubMed] [Google Scholar]
- Lin J., Westler W. M., Cleland W. W., Markley J. L., Frey P. A. Fractionation factors and activation energies for exchange of the low barrier hydrogen bonding proton in peptidyl trifluoromethyl ketone complexes of chymotrypsin. Proc Natl Acad Sci U S A. 1998 Dec 8;95(25):14664–14668. doi: 10.1073/pnas.95.25.14664. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Martin J. L., Wilson J. E., Haynes R. L., Furman P. A. Mechanism of resistance of human immunodeficiency virus type 1 to 2',3'-dideoxyinosine. Proc Natl Acad Sci U S A. 1993 Jul 1;90(13):6135–6139. doi: 10.1073/pnas.90.13.6135. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meyer P. R., Matsuura S. E., Mian A. M., So A. G., Scott W. A. A mechanism of AZT resistance: an increase in nucleotide-dependent primer unblocking by mutant HIV-1 reverse transcriptase. Mol Cell. 1999 Jul;4(1):35–43. doi: 10.1016/s1097-2765(00)80185-9. [DOI] [PubMed] [Google Scholar]
- Perrin C. L., Nielson J. B. "Strong" hydrogen bonds in chemistry and biology. Annu Rev Phys Chem. 1997;48:511–544. doi: 10.1146/annurev.physchem.48.1.511. [DOI] [PubMed] [Google Scholar]
- Peräkylä M., Pakkanen T. A. Ab initio models for receptor-ligand interactions in proteins. 4. Model assembly study of the catalytic mechanism of triosephosphate isomerase. Proteins. 1996 Jun;25(2):225–236. doi: 10.1002/(SICI)1097-0134(199606)25:2<225::AID-PROT8>3.0.CO;2-G. [DOI] [PubMed] [Google Scholar]
- Peräkylä M., Pakkanen T. A. Model assembly study of the ligand binding by p-hydroxybenzoate hydroxylase: correlation between the calculated binding energies and the experimental dissociation constants. Proteins. 1995 Jan;21(1):22–29. doi: 10.1002/prot.340210104. [DOI] [PubMed] [Google Scholar]
- Piana S., Carloni P. Conformational flexibility of the catalytic Asp dyad in HIV-1 protease: An ab initio study on the free enzyme. Proteins. 2000 Apr 1;39(1):26–36. doi: 10.1002/(sici)1097-0134(20000401)39:1<26::aid-prot3>3.0.co;2-n. [DOI] [PubMed] [Google Scholar]
- Quan Y., Gu Z., Li X., Liang C., Parniak M. A., Wainberg M. A. Endogenous reverse transcriptase assays reveal synergy between combinations of the M184V and other drug resistance-conferring mutations in interactions with nucleoside analog triphosphates. J Mol Biol. 1998 Mar 27;277(2):237–247. doi: 10.1006/jmbi.1997.1592. [DOI] [PubMed] [Google Scholar]
- Richman D. D. HIV drug resistance. Annu Rev Pharmacol Toxicol. 1993;33:149–164. doi: 10.1146/annurev.pa.33.040193.001053. [DOI] [PubMed] [Google Scholar]
- Rodriguez E. J., Angeles T. S., Meek T. D. Use of nitrogen-15 kinetic isotope effects to elucidate details of the chemical mechanism of human immunodeficiency virus 1 protease. Biochemistry. 1993 Nov 23;32(46):12380–12385. doi: 10.1021/bi00097a015. [DOI] [PubMed] [Google Scholar]
- Sarafianos S. G., Das K., Ding J., Boyer P. L., Hughes S. H., Arnold E. Touching the heart of HIV-1 drug resistance: the fingers close down on the dNTP at the polymerase active site. Chem Biol. 1999 May;6(5):R137–R146. doi: 10.1016/s1074-5521(99)80071-4. [DOI] [PubMed] [Google Scholar]
- Schiøtt B., Iversen B. B., Madsen G. K., Larsen F. K., Bruice T. C. On the electronic nature of low-barrier hydrogen bonds in enzymatic reactions. Proc Natl Acad Sci U S A. 1998 Oct 27;95(22):12799–12802. doi: 10.1073/pnas.95.22.12799. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shirasaka T., Kavlick M. F., Ueno T., Gao W. Y., Kojima E., Alcaide M. L., Chokekijchai S., Roy B. M., Arnold E., Yarchoan R. Emergence of human immunodeficiency virus type 1 variants with resistance to multiple dideoxynucleosides in patients receiving therapy with dideoxynucleosides. Proc Natl Acad Sci U S A. 1995 Mar 14;92(6):2398–2402. doi: 10.1073/pnas.92.6.2398. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sluis-Cremer N., Arion D., Kaushik N., Lim H., Parniak M. A. Mutational analysis of Lys65 of HIV-1 reverse transcriptase. Biochem J. 2000 May 15;348(Pt 1):77–82. [PMC free article] [PubMed] [Google Scholar]
- Tantillo C., Ding J., Jacobo-Molina A., Nanni R. G., Boyer P. L., Hughes S. H., Pauwels R., Andries K., Janssen P. A., Arnold E. Locations of anti-AIDS drug binding sites and resistance mutations in the three-dimensional structure of HIV-1 reverse transcriptase. Implications for mechanisms of drug inhibition and resistance. J Mol Biol. 1994 Oct 28;243(3):369–387. doi: 10.1006/jmbi.1994.1665. [DOI] [PubMed] [Google Scholar]
- Tisdale M., Kemp S. D., Parry N. R., Larder B. A. Rapid in vitro selection of human immunodeficiency virus type 1 resistant to 3'-thiacytidine inhibitors due to a mutation in the YMDD region of reverse transcriptase. Proc Natl Acad Sci U S A. 1993 Jun 15;90(12):5653–5656. doi: 10.1073/pnas.90.12.5653. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Troullier N, Martins JL. Efficient pseudopotentials for plane-wave calculations. Phys Rev B Condens Matter. 1991 Jan 15;43(3):1993–2006. doi: 10.1103/physrevb.43.1993. [DOI] [PubMed] [Google Scholar]
- Turner B. G., Summers M. F. Structural biology of HIV. J Mol Biol. 1999 Jan 8;285(1):1–32. doi: 10.1006/jmbi.1998.2354. [DOI] [PubMed] [Google Scholar]
- Wang J. H., Xiao D. G., Deng H., Webb M. R., Callender R. Raman difference studies of GDP and GTP binding to c-Harvey ras. Biochemistry. 1998 Aug 4;37(31):11106–11116. doi: 10.1021/bi980471m. [DOI] [PubMed] [Google Scholar]
- Zhang D., Caliendo A. M., Eron J. J., DeVore K. M., Kaplan J. C., Hirsch M. S., D'Aquila R. T. Resistance to 2',3'-dideoxycytidine conferred by a mutation in codon 65 of the human immunodeficiency virus type 1 reverse transcriptase. Antimicrob Agents Chemother. 1994 Feb;38(2):282–287. doi: 10.1128/aac.38.2.282. [DOI] [PMC free article] [PubMed] [Google Scholar]
