Abstract
We previously reported a bifunctional ribozyme that catalyzes self-aminoacylation and subsequent acyl-transfer to a tRNA. The ribozyme selectively recognizes a biotinyl-glutamine substrate, and charges the tRNA molecule in trans. Structurally, there are two catalytic domains, referred to as glutamine-recognition (QR) and acyl-transferase (ATRib). We report here the essential catalytic core of the QR domain as determined by extensive biochemical probing, mutation, and structural minimization. The minimal core of the QR domain is a 29-nt helix-loop RNA, which is also able to glutaminylate ATRib in trans. Its amino acid binding site is embedded in an 11-nt cluster that is adjacent to the loop that interacts with the ATRib domain. Our study shows that a minihelix-loop RNA can act as a trans-aminoacylation catalyst, which lends support for the critical role of minihelix-loops in the early evolution of the aminoacylation system.
Full Text
The Full Text of this article is available as a PDF (270.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Behlen L. S., Sampson J. R., DiRenzo A. B., Uhlenbeck O. C. Lead-catalyzed cleavage of yeast tRNAPhe mutants. Biochemistry. 1990 Mar 13;29(10):2515–2523. doi: 10.1021/bi00462a013. [DOI] [PubMed] [Google Scholar]
- Boudvillain M., Pyle A. M. Defining functional groups, core structural features and inter-domain tertiary contacts essential for group II intron self-splicing: a NAIM analysis. EMBO J. 1998 Dec 1;17(23):7091–7104. doi: 10.1093/emboj/17.23.7091. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Crick F. H. The origin of the genetic code. J Mol Biol. 1968 Dec;38(3):367–379. doi: 10.1016/0022-2836(68)90392-6. [DOI] [PubMed] [Google Scholar]
- Ellington A. D., Khrapov M., Shaw C. A. The scene of a frozen accident. RNA. 2000 Apr;6(4):485–498. doi: 10.1017/s1355838200000224. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Green R., Samaha R. R., Noller H. F. Mutations at nucleotides G2251 and U2585 of 23 S rRNA perturb the peptidyl transferase center of the ribosome. J Mol Biol. 1997 Feb 14;266(1):40–50. doi: 10.1006/jmbi.1996.0780. [DOI] [PubMed] [Google Scholar]
- Illangasekare M., Kovalchuke O., Yarus M. Essential structures of a self-aminoacylating RNA. J Mol Biol. 1997 Dec 12;274(4):519–529. doi: 10.1006/jmbi.1997.1414. [DOI] [PubMed] [Google Scholar]
- Illangasekare M., Sanchez G., Nickles T., Yarus M. Aminoacyl-RNA synthesis catalyzed by an RNA. Science. 1995 Feb 3;267(5198):643–647. doi: 10.1126/science.7530860. [DOI] [PubMed] [Google Scholar]
- Illangasekare M., Yarus M. Specific, rapid synthesis of Phe-RNA by RNA. Proc Natl Acad Sci U S A. 1999 May 11;96(10):5470–5475. doi: 10.1073/pnas.96.10.5470. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jenne A., Famulok M. A novel ribozyme with ester transferase activity. Chem Biol. 1998 Jan;5(1):23–34. doi: 10.1016/s1074-5521(98)90084-9. [DOI] [PubMed] [Google Scholar]
- Knight R. D., Landweber L. F. Guilt by association: the arginine case revisited. RNA. 2000 Apr;6(4):499–510. doi: 10.1017/s1355838200000145. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Konforti B. B., Liu Q., Pyle A. M. A map of the binding site for catalytic domain 5 in the core of a group II intron ribozyme. EMBO J. 1998 Dec 1;17(23):7105–7117. doi: 10.1093/emboj/17.23.7105. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Krzyzosiak W. J., Marciniec T., Wiewiorowski M., Romby P., Ebel J. P., Giegé R. Characterization of the lead(II)-induced cleavages in tRNAs in solution and effect of the Y-base removal in yeast tRNAPhe. Biochemistry. 1988 Jul 26;27(15):5771–5777. doi: 10.1021/bi00415a056. [DOI] [PubMed] [Google Scholar]
- Lee N., Bessho Y., Wei K., Szostak J. W., Suga H. Ribozyme-catalyzed tRNA aminoacylation. Nat Struct Biol. 2000 Jan;7(1):28–33. doi: 10.1038/71225. [DOI] [PubMed] [Google Scholar]
- Lohse P. A., Szostak J. W. Ribozyme-catalysed amino-acid transfer reactions. Nature. 1996 May 30;381(6581):442–444. doi: 10.1038/381442a0. [DOI] [PubMed] [Google Scholar]
- Moazed D., Stern S., Noller H. F. Rapid chemical probing of conformation in 16 S ribosomal RNA and 30 S ribosomal subunits using primer extension. J Mol Biol. 1986 Feb 5;187(3):399–416. doi: 10.1016/0022-2836(86)90441-9. [DOI] [PubMed] [Google Scholar]
- Murphy F. L., Cech T. R. GAAA tetraloop and conserved bulge stabilize tertiary structure of a group I intron domain. J Mol Biol. 1994 Feb 11;236(1):49–63. doi: 10.1006/jmbi.1994.1117. [DOI] [PubMed] [Google Scholar]
- Pan T., Gutell R. R., Uhlenbeck O. C. Folding of circularly permuted transfer RNAs. Science. 1991 Nov 29;254(5036):1361–1364. doi: 10.1126/science.1720569. [DOI] [PubMed] [Google Scholar]
- Ribas de Pouplana L., Turner R. J., Steer B. A., Schimmel P. Genetic code origins: tRNAs older than their synthetases? Proc Natl Acad Sci U S A. 1998 Sep 15;95(19):11295–11300. doi: 10.1073/pnas.95.19.11295. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ryder S. P., Strobel S. A. Nucleotide analog interference mapping. Methods. 1999 May;18(1):38–50. doi: 10.1006/meth.1999.0755. [DOI] [PubMed] [Google Scholar]
- Schimmel P., Alexander R. Diverse RNA substrates for aminoacylation: clues to origins? Proc Natl Acad Sci U S A. 1998 Sep 1;95(18):10351–10353. doi: 10.1073/pnas.95.18.10351. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schimmel P., Giegé R., Moras D., Yokoyama S. An operational RNA code for amino acids and possible relationship to genetic code. Proc Natl Acad Sci U S A. 1993 Oct 1;90(19):8763–8768. doi: 10.1073/pnas.90.19.8763. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Strobel S. A., Shetty K. Defining the chemical groups essential for Tetrahymena group I intron function by nucleotide analog interference mapping. Proc Natl Acad Sci U S A. 1997 Apr 1;94(7):2903–2908. doi: 10.1073/pnas.94.7.2903. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Suga H., Lohse P. A., Szostak J. W. Structural and kinetic characterization of an acyl transferase ribozyme. J Am Chem Soc. 1998 Feb 18;120(6):1151–1156. doi: 10.1021/ja972472s. [DOI] [PubMed] [Google Scholar]
- Woese C. R., Dugre D. H., Dugre S. A., Kondo M., Saxinger W. C. On the fundamental nature and evolution of the genetic code. Cold Spring Harb Symp Quant Biol. 1966;31:723–736. doi: 10.1101/sqb.1966.031.01.093. [DOI] [PubMed] [Google Scholar]
- Woese C. R., Dugre D. H., Saxinger W. C., Dugre S. A. The molecular basis for the genetic code. Proc Natl Acad Sci U S A. 1966 Apr;55(4):966–974. doi: 10.1073/pnas.55.4.966. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yarus M. RNA-ligand chemistry: a testable source for the genetic code. RNA. 2000 Apr;6(4):475–484. doi: 10.1017/s1355838200002569. [DOI] [PMC free article] [PubMed] [Google Scholar]
