Skip to main content
Protein & Cell logoLink to Protein & Cell
. 2010 Feb 6;1(2):143–152. doi: 10.1007/s13238-010-0004-3

Alpha-helical cationic antimicrobial peptides: relationships of structure and function

Yibing Huang 1, Jinfeng Huang 1, Yuxin Chen 1,
PMCID: PMC4875170  PMID: 21203984

Abstract

Antimicrobial peptides (AMPs), with their extraordinary properties, such as broad-spectrum activity, rapid action and difficult development of resistance, have become promising molecules as new antibiotics. Despite their various mechanisms of action, the interaction of AMPs with the bacterial cell membrane is the key step for their mode of action. Moreover, it is generally accepted that the membrane is the primary target of most AMPs, and the interaction between AMPs and eukaryotic cell membranes (causing toxicity to host cells) limits their clinical application. Therefore, researchers are engaged in reforming or de novo designing AMPs as a ‘singleedged sword’ that contains high antimicrobial activity yet low cytotoxicity against eukaryotic cells. To improve the antimicrobial activity of AMPs, the relationship between the structure and function of AMPs has been rigorously pursued. In this review, we focus on the current knowledge of α-helical cationic antimicrobial peptides, one of the most common types of AMPs in nature.

Keywords: antimicrobial peptides, mechanism of action, peptide structure, antimicrobial activity

References

  1. Abraham T., Lewis R.N., Hodges R.S., McElhaney R.N. Isothermal titration calorimetry studies of the binding of the antimicrobial peptide gramicidin S to phospholipid bilayer membranes. Biochemistry. 2005;44:11279–11285. doi: 10.1021/bi050898a. [DOI] [PubMed] [Google Scholar]
  2. Ali F.E., Cao G., Poudyal A., Vaara T., Nation R.L., Vaara M., Li J. Pharmacokinetics of novel antimicrobial cationic peptides NAB 7061 and NAB 739 in rats following intravenous administration. J Antimicrob Chemother. 2009;64:1067–1070. doi: 10.1093/jac/dkp331. [DOI] [PubMed] [Google Scholar]
  3. Avrahami D., Oren Z., Shai Y. Effect of multiple aliphatic amino acids substitutions on the structure, function, and mode of action of diastereomeric membrane active peptides. Biochemistry. 2001;40:12591–12603. doi: 10.1021/bi0105330. [DOI] [PubMed] [Google Scholar]
  4. Avrahami D., Shai Y. Conjugation of a magainin analogue with lipophilic acids controls hydrophobicity, solution assembly, and cell selectivity. Biochemistry. 2002;41:2254–2263. doi: 10.1021/bi011549t. [DOI] [PubMed] [Google Scholar]
  5. Benincasa M., Skerlavaj B., Gennaro R., Pellegrini A., Zanetti M. In vitro and in vivo antimicrobial activity of two alphahelical cathelicidin peptides and of their synthetic analogs. Peptides. 2003;24:1723–1731. doi: 10.1016/j.peptides.2003.07.025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bland J.M., De Lucca A.J., Jacks T.J., Vigo C.B. All-D-cecropin B: Synthesis, conformation, lipopolysaccharide binding, and antibacterial activity. Mol Cell Biochem. 2001;218:105–111. doi: 10.1023/A:1007293816634. [DOI] [PubMed] [Google Scholar]
  7. Brogden K.A. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev. 2005;3:238–250. doi: 10.1038/nrmicro1098. [DOI] [PubMed] [Google Scholar]
  8. Bryan L.E. General Mechanisms of Resistance to Antibiotics. J Antimicrob Chemoth. 1988;22:1–15. doi: 10.1093/jac/22.1.1. [DOI] [PubMed] [Google Scholar]
  9. Chen Y., Guarnieri M.T., Vasil A.I., Vasil M.L., Mant C.T., Hodges R.S. Role of peptide hydrophobicity in the mechanism of action of alpha-helical antimicrobial peptides. Antimicrob Agents Chemother. 2007;51:1398–1406. doi: 10.1128/AAC.00925-06. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Chen Y., Mant C.T., Farmer S.W., Hancock R.E., Vasil M.L., Hodges R.S. Rational design of alpha-helical antimicrobial peptides with enhanced activities and specificity/therapeutic index. J Biol Chem. 2005;280:12316–12329. doi: 10.1074/jbc.M413406200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Chen Y., Mant C.T., Hodges R.S. Determination of stereochemistry stability coefficients of amino acid side-chains in an amphipathic alpha-helix. J Pept Res. 2002;59:18–33. doi: 10.1046/j.1397-002x.2001.10994.x. [DOI] [PubMed] [Google Scholar]
  12. Chen Y.X., Vasil A.I., Rehaume L., Mant C.T., Burns J.L., Vasil M. L., Hancock R.E.W., Hodges R.S. Comparison of biophysical and biologic properties of alpha-helical enantiomeric antimicrobial peptides. Chem Biol Drug Des. 2006;67:162–173. doi: 10.1111/j.1747-0285.2006.00349.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Dathe M., Schumann M., Wieprecht T., Winkler A., Beyermann M., Krause E., Matsuzaki K., Murase O., Bienert M. Peptide helicity and membrane surface charge modulate the balance of electrostatic and hydrophobic interactions with lipid bilayers and biological membranes. Biochemistry. 1996;35:12612–12622. doi: 10.1021/bi960835f. [DOI] [PubMed] [Google Scholar]
  14. Dathe M., Wieprecht T. Structural features of helical antimicrobial peptides: their potential to modulate activity on model membranes and biological cells. Bba-Biomembranes. 1999;1462:71–87. doi: 10.1016/S0005-2736(99)00201-1. [DOI] [PubMed] [Google Scholar]
  15. Dathe M., Wieprecht T., Nikolenko H., Handel L., Maloy W.L., MacDonald D.L., Beyermann M., Bienert M. Hydrophobicity, hydrophobic moment and angle subtended by charged residues modulate antibacterial and haemolytic activity of amphipathic helical peptides. Febs Lett. 1997;403:208–212. doi: 10.1016/S0014-5793(97)00055-0. [DOI] [PubMed] [Google Scholar]
  16. De Lucca A.J., Bland J.M., Vigo C.B., Jacks T.J., Peter J., Walsh T.J. D-Cecropin B: proteolytic resistance, lethality for pathogenic fungi and binding properties. Med Mycol. 2000;38:301–308. doi: 10.1080/mmy.38.4.301.308. [DOI] [PubMed] [Google Scholar]
  17. Ehrenstein G., Lecar H. Electrically gated ionic channels in lipid bilayers. Q Rev Biophys. 1977;10:1–34. doi: 10.1017/S0033583500000123. [DOI] [PubMed] [Google Scholar]
  18. Eisenberg D. Three-dimensional structure of membrane and surface proteins. Annu Rev Biochem. 1984;53:595–623. doi: 10.1146/annurev.bi.53.070184.003115. [DOI] [PubMed] [Google Scholar]
  19. Elmquist A., Langel U. In vitro uptake and stability study of pVEC and its all-D analog. Biol Chem. 2003;384:387–393. doi: 10.1515/BC.2003.044. [DOI] [PubMed] [Google Scholar]
  20. Falla T.J., Karunaratne D.N., Hancock R.E.W. Mode of action of the antimicrobial peptide indolicidin. J Biol Chem. 1996;271:19298–19303. doi: 10.1074/jbc.271.32.19298. [DOI] [PubMed] [Google Scholar]
  21. Fernandez-Vidal M., Jayasinghe S., Ladokhin A.S., White S.H. Folding amphipathic helices into membranes: amphiphilicity trumps hydrophobicity. J Mol Biol. 2007;370:459–470. doi: 10.1016/j.jmb.2007.05.016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Giuliani A., Pirri G., Nicoletto S.F. Antimicrobial peptides: an overview of a promising class of therapeutics. Cent Eur J Biol. 2007;2:1–33. [Google Scholar]
  23. Hallock K.J., Lee D.K., Ramamoorthy A. MSI-78, an analogue of the magainin antimicrobial peptides, disrupts lipid bilayer structure via positive curvature strain. Biophys J. 2003;84:3052–3060. doi: 10.1016/S0006-3495(03)70031-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Hamamoto K., Kida Y., Zhang Y., Shimizu T., Kuwano K. Antimicrobial activity and stability to proteolysis of small linear cationic peptides with D-amino acid substitutions. Microbiol Immunol. 2002;46:741–749. doi: 10.1111/j.1348-0421.2002.tb02759.x. [DOI] [PubMed] [Google Scholar]
  25. Hancock R.E. Peptide antibiotics. Lancet. 1997;349:418–422. doi: 10.1016/S0140-6736(97)80051-7. [DOI] [PubMed] [Google Scholar]
  26. Hancock R.E., Rozek A. Role of membranes in the activities of antimicrobial cationic peptides. FEMS Microbiol Lett. 2002;206:143–149. doi: 10.1111/j.1574-6968.2002.tb11000.x. [DOI] [PubMed] [Google Scholar]
  27. Hong S.Y., Oh J.E., Lee K.H. Effect of D-amino acid substitution on the stability, the secondary structure, and the activity of membrane-active peptide. Biochem Pharmacol. 1999;58:1775–1780. doi: 10.1016/S0006-2952(99)00259-2. [DOI] [PubMed] [Google Scholar]
  28. Jenssen H., Hamill P., Hancock R.E. Peptide antimicrobial agents. Clin Microbiol Rev. 2006;19:491–511. doi: 10.1128/CMR.00056-05. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Jia X., Patrzykat A., Devlin R.H., Ackerman P.A., Iwama G.K., Hancock R.E.W. Antimicrobial peptides protect coho salmon from Vibrio anguillarum infections. Appl Environ Microb. 2000;66:1928–1932. doi: 10.1128/AEM.66.5.1928-1932.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Jiang Z.Q., Vasil A.I., Hale J.D., Hancock R.E.W., Vasil M.L., Hodges R.S. Effects of net charge and the number of positively charged residues on the biological activity of amphipathic alpha-helical cationic antimicrobial peptides. Biopolymers. 2008;90:369–383. doi: 10.1002/bip.20911. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Joanne P., Falord M., Chesneau O., Lacombe C., Castano S., Desbat B., Auvynet C., Nicolas P., Msadek T., El Amri C. Comparative study of two plasticins: specificity, interfacial behavior, and bactericidal activity. Biochemistry. 2009;48:9372–9383. doi: 10.1021/bi901222p. [DOI] [PubMed] [Google Scholar]
  32. Jung H.J., Park Y., Sung W.S., Suh B.K., Lee J., Hahm K.S., Lee D.G. Fungicidal effect of pleurocidin by membraneactive mechanism and design of enantiomeric analogue for proteolytic resistance. Biochim Biophys Acta. 2007;1768:1400–1405. doi: 10.1016/j.bbamem.2007.02.024. [DOI] [PubMed] [Google Scholar]
  33. Konno K., Rangel M., Oliveira J.S., Dos Santos Cabrera M.P., Fontana R., Hirata I.Y., Hide I., Nakata Y., Mori K., Kawano M., et al. Decoralin, a novel linear cationic alpha-helical peptide from the venom of the solitary eumenine wasp Oreumenes decoratus. Peptides. 2007;28:2320–2327. doi: 10.1016/j.peptides.2007.09.017. [DOI] [PubMed] [Google Scholar]
  34. Kovacs J.M., Mant C.T., Hodges R.S. Determination of intrinsic hydrophilicity/hydrophobicity of amino acid side chains in peptides in the absence of nearest-neighbor or comformational effects. Biopolymers. 2006;84:283–297. doi: 10.1002/bip.20417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Ladokhin A.S., White S.H. ’Detergent-like’ permeabilization of anionic lipid vesicles by melittin. Biochim Biophys Acta. 2001;1514:253–260. doi: 10.1016/S0005-2736(01)00382-0. [DOI] [PubMed] [Google Scholar]
  36. Lee D.G., Kim H.N., Park Y.K., Kim H.K., Choi B.H., Choi C.H., Hahm K.S. Design of novel analogue peptides with potent antibiotic activity based on the antimicrobial peptide, HP (2–20), derived from N-terminus of Helicobacter pylori ribosomal protein L1. Bba-Proteins Proteom. 2002;1598:185–194. doi: 10.1016/S0167-4838(02)00373-4. [DOI] [PubMed] [Google Scholar]
  37. Leontiadou H., Mark A.E., Marrink S.J. Antimicrobial peptides in action. J Am Chem Soc. 2006;128:12156–12161. doi: 10.1021/ja062927q. [DOI] [PubMed] [Google Scholar]
  38. Lugtenberg B., Van Alphen L. Molecular architecture and functioning of the outer membrane of Escherichia coli and other gram-negative bacteria. Biochim Biophys Acta. 1983;737:51–115. doi: 10.1016/0304-4157(83)90014-X. [DOI] [PubMed] [Google Scholar]
  39. Manna M., Mukhopadhyay C. Cause and effect of melittin-induced pore formation: a computational approach. Langmuir. 2009;25:12235–12242. doi: 10.1021/la902660q. [DOI] [PubMed] [Google Scholar]
  40. Mant C.T., Chen Y., Hodges R.S. Temperature profiling of polypeptides in reversed-phase liquid chromatography — I. Monitoring of dimerization and unfolding of amphipathic alphahelical peptides. J Chromatogr A. 2003;1009:29–43. doi: 10.1016/S0021-9673(03)00621-6. [DOI] [PubMed] [Google Scholar]
  41. Marr A.K., Gooderham W.J., Hancock R.E. Antibacterial peptides for therapeutic use: obstacles and realistic outlook. Curr Opin Pharmacol. 2006;6:468–472. doi: 10.1016/j.coph.2006.04.006. [DOI] [PubMed] [Google Scholar]
  42. Marshall S.H., Arenas G. Antimicrobial peptides: A natural alternative to chemical antibiotics and a potential for applied biotechnology. Electron J Biotechn. 2003;6:271–284. [Google Scholar]
  43. Matsuzaki K. Why and how are peptide-lipid interactions utilized for self-defense? Magainins and tachyplesins as archetypes. Biochim Biophys Acta. 1999;1462:1–10. doi: 10.1016/S0005-2736(99)00197-2. [DOI] [PubMed] [Google Scholar]
  44. Matsuzaki K., Murase O., Fujii N., Miyajima K. Translocation of a channel-forming antimicrobial peptide, magainin 2, across lipid bilayers by forming a pore. Biochemistry. 1995;34:6521–6526. doi: 10.1021/bi00019a033. [DOI] [PubMed] [Google Scholar]
  45. Matsuzaki K., Murase O., Fujii N., Miyajima K. An antimicrobial peptide, magainin 2, induced rapid flip-flop of phospholipids coupled with pore formation and peptide translocation. Biochemistry. 1996;35:11361–11368. doi: 10.1021/bi960016v. [DOI] [PubMed] [Google Scholar]
  46. Mavri J., Vogel H.J. Ion pair formation of phosphorylated amino acids and lysine and arginine side chains: a theoretical study. Proteins. 1996;24:495–501. doi: 10.1002/(SICI)1097-0134(199604)24:4<495::AID-PROT8>3.0.CO;2-D. [DOI] [PubMed] [Google Scholar]
  47. Meng H., Kumar K. Antimicrobial activity and protease stability of peptides containing fluorinated amino acids. J AmChem Soc. 2007;129:15615–15622. doi: 10.1021/ja075373f. [DOI] [PubMed] [Google Scholar]
  48. Mor A., Nguyen V.H., Delfour A., Miglioresamour D., Nicolas P. Isolation, Amino-Acid-Sequence, and Synthesis of Dermaseptin, a Novel Antimicrobial Peptide of Amphibian Skin. Biochemistry. 1991;30:8824–8830. doi: 10.1021/bi00100a014. [DOI] [PubMed] [Google Scholar]
  49. Neu H.C. The crisis in antibiotic resistance. Science. 1992;257:1064–1073. doi: 10.1126/science.257.5073.1064. [DOI] [PubMed] [Google Scholar]
  50. Oren Z., Shai Y. A class of highly potent antibacterial peptides derived from pardaxin, a pore-forming peptide isolated from Moses sole fish Pardachirus marmoratus. Eur J Biochem. 1996;237:303–310. doi: 10.1111/j.1432-1033.1996.0303n.x. [DOI] [PubMed] [Google Scholar]
  51. Oren Z., Shai Y. Selective lysis of bacteria but not mammalian cells by diastereomers of melittin: Structure-function study. Biochemistry. 1997;36:1826–1835. doi: 10.1021/bi962507l. [DOI] [PubMed] [Google Scholar]
  52. Oyston P.C., Fox M.A., Richards S.J., Clark G.C. Novel peptide therapeutics for treatment of infections. J Med Microbiol. 2009;58:977–987. doi: 10.1099/jmm.0.011122-0. [DOI] [PubMed] [Google Scholar]
  53. Papo N., Oren Z., Pag U., Sahl H.G., Shai Y. The consequence of sequence alteration of an amphipathic alphahelical antimicrobial peptide and its diastereomers. J Biol Chem. 2002;277:33913–33921. doi: 10.1074/jbc.M204928200. [DOI] [PubMed] [Google Scholar]
  54. Park Y., Park S.C., Park H.K., Shin S.Y., Kim Y., Hahm K.S. Structure-activity relationship of HP(2–20) analog peptide: Enhanced antimicrobial activity by N-terminal random coil region deletion. Biopolymers. 2007;88:199–207. doi: 10.1002/bip.20679. [DOI] [PubMed] [Google Scholar]
  55. Pathak N., Salasauvert R., Ruche G., Janna M.H., Mccarthy D., Harrison R.G. Comparison of the Effects of Hydrophobicity, Amphiphilicity, and Alpha-Helicity on the Activities of Antimicrobial Peptides. Proteins. 1995;22:182–186. doi: 10.1002/prot.340220210. [DOI] [PubMed] [Google Scholar]
  56. Pouny Y., Rapaport D., Mor A., Nicolas P., Shai Y. Interaction of antimicrobial dermaseptin and its fluorescently labeled analogues with phospholipid membranes. Biochemistry. 1992;31:12416–12423. doi: 10.1021/bi00164a017. [DOI] [PubMed] [Google Scholar]
  57. Powers J.P., Hancock R.E. The relationship between peptide structure and antibacterial activity. Peptides. 2003;24:1681–1691. doi: 10.1016/j.peptides.2003.08.023. [DOI] [PubMed] [Google Scholar]
  58. Resende J.M., Moraes C.M., Munhoz V.H., Aisenbrey C., Verly R. M., Bertani P., Cesar A., Pilo-Veloso D., Bechinger B. Membrane structure and conformational changes of the antibiotic heterodimeric peptide distinctin by solid-state NMR spectroscopy. Proc Natl Acad Sci U S A. 2009;106:16639–16644. doi: 10.1073/pnas.0905069106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Shai Y. Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by alpha-helical antimicrobial and cell non-selective membrane-lytic peptides. Biochim Biophys Acta. 1999;1462:55–70. doi: 10.1016/S0005-2736(99)00200-X. [DOI] [PubMed] [Google Scholar]
  60. Shai Y. Mode of action of membrane active antimicrobial peptides. Biopolymers. 2002;66:236–248. doi: 10.1002/bip.10260. [DOI] [PubMed] [Google Scholar]
  61. Shai Y., Oren Z. Diastereomers of cytolysins, a novel class of potent antibacterial peptides. J Biol Chem. 1996;271:7305–7308. doi: 10.1074/jbc.271.13.7305. [DOI] [PubMed] [Google Scholar]
  62. Shalev D.E., Mor A., Kustanovich I. Structural consequences of carboxyamidation of dermaseptin S3. Biochemistry. 2002;41:7312–7317. doi: 10.1021/bi016013m. [DOI] [PubMed] [Google Scholar]
  63. Tossi A., Sandri L., Giangaspero A. Amphipathic, alphahelical antimicrobial peptides. Biopolymers. 2000;55:4–30. doi: 10.1002/1097-0282(2000)55:1<4::AID-BIP30>3.0.CO;2-M. [DOI] [PubMed] [Google Scholar]
  64. Tytler E.M., Anantharamaiah G.M., Walker D.E., Mishra V.K., Palgunachari M.N., Segrest J.P. Molecular basis for prokaryotic specificity of magainin-induced lysis. Biochemistry. 1995;34:4393–4401. doi: 10.1021/bi00013a031. [DOI] [PubMed] [Google Scholar]
  65. Verdon J., Falge M., Maier E., Bruhn H., Steinert M., Faber C., Benz R., Hechard Y. Detergent-like activity and alpha-helical structure of warnericin RK, an anti-legionella peptide. Biophysical J. 2009;97:1933–1940. doi: 10.1016/j.bpj.2009.06.053. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Vunnam S., Juvvadi P., Rotondi K.S., Merrifield R.B. Synthesis and study of normal, enantio, retro, and retroenantio isomers of cecropin A-melittin hybrids, their end group effects and selective enzyme inactivation. J Pept Res. 1998;51:38–44. doi: 10.1111/j.1399-3011.1998.tb00414.x. [DOI] [PubMed] [Google Scholar]
  67. Wade D., Boman A., Wahlin B., Drain C.M., Andreu D., Boman H. G., Merrifield R.B. All-D Amino Acid-Containing Channel-Forming Antibiotic Peptides. Proc Natl Acad Sci U S A. 1990;87:4761–4765. doi: 10.1073/pnas.87.12.4761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Wakabayashi H., Matsumoto H., Hashimoto K., Teraguchi S., Takase M., Hayasawa H. N-acylated and D enantiomer derivatives of a nonamer core peptide of lactoferricin B showing improved antimicrobial activity. Antimicrob Agents Ch. 1999;43:1267–1269. doi: 10.1128/aac.43.5.1267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Wang G., Li X., Wang Z. APD2: the updated antimicrobial peptide database and its application in peptide design. Nucleic Acids Res. 2009;37:D933–937. doi: 10.1093/nar/gkn823. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Wieprecht T., Dathe M., Beyermann M., Krause E., Maloy W.L., MacDonald D.L., Bienert M. Peptide hydrophobicity controls the activity and selectivity of magainin 2 amide in interaction with membranes. Biochemistry. 1997;36:6124–6132. doi: 10.1021/bi9619987. [DOI] [PubMed] [Google Scholar]
  71. Wildman K.A.H., Lee D.K., Ramamoorthy A. Mechanism of lipid bilayer disruption by the human antimicrobial peptide, LL-37. Biochemistry. 2003;42:6545–6558. doi: 10.1021/bi0273563. [DOI] [PubMed] [Google Scholar]
  72. Wu M.H., Maier E., Benz R., Hancock R.E.W. Mechanism of interaction of different classes of cationic antimicrobial peptides with planar bilayers and with the cytoplasmic membrane of Escherichia coli. Biochemistry. 1999;38:7235–7242. doi: 10.1021/bi9826299. [DOI] [PubMed] [Google Scholar]
  73. Yeaman M.R., Yount N.Y. Mechanisms of antimicrobial peptide action and resistance. Pharmacological Rev. 2003;55:27–55. doi: 10.1124/pr.55.1.2. [DOI] [PubMed] [Google Scholar]
  74. Zasloff M. Magainins, a Class of Antimicrobial Peptides from Xenopus Skin — Isolation, Characterization of 2 Active Forms, and Partial Cdna Sequence of a Precursor. Proc Natl Acad Sci U S A. 1987;84:5449–5453. doi: 10.1073/pnas.84.15.5449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  75. Zelezetsky I., Tossi A. Alpha-helical antimicrobial peptides-using a sequence template to guide structure-activity relationship studies. Biochim Biophys Acta. 2006;1758:1436–1449. doi: 10.1016/j.bbamem.2006.03.021. [DOI] [PubMed] [Google Scholar]
  76. Zhang L., Benz R., Hancock R.E. Influence of proline residues on the antibacterial and synergistic activities of alphahelical peptides. Biochemistry. 1999;38:8102–8111. doi: 10.1021/bi9904104. [DOI] [PubMed] [Google Scholar]
  77. Zhang L., Falla T., Wu M., Fidai S., Burian J., Kay W., Hancock R.E. Determinants of recombinant production of antimicrobial cationic peptides and creation of peptide variants in bacteria. Biochem Biophys Res Commun. 1998;247:674–680. doi: 10.1006/bbrc.1998.8848. [DOI] [PubMed] [Google Scholar]
  78. Zilberstein D., Schuldiner S., Padan E. Proton electrochemical gradient in Escherichia coli cells and its relation to active transport of lactose. Biochemistry. 1979;18:669–673. doi: 10.1021/bi00571a018. [DOI] [PubMed] [Google Scholar]

Articles from Protein & Cell are provided here courtesy of Oxford University Press

RESOURCES