Skip to main content
Science Progress logoLink to Science Progress
. 2019 Feb 27;84(4):267–290. doi: 10.3184/003685001783238961

Direct Imaging of Single-Molecules: From Dynamics of a Single DNA Chain to the Study of Complex DNA-Protein Interactions

Benoit Ladoux 1, Jean-Pierre Quivy 2, Patrick S Doyle 3, Genevieve Almouzni 2, Jean-Louis Viovy 1
PMCID: PMC10367457  PMID: 11838238

Abstract

Recent years have seen significant advances in the characterization and manipulation of individual molecules. The combination of single-molecule fluorescence and micromanipulation enables one to study physical and biological systems at new length scales, to unravel qualitative mechanisms, and to measure kinetic parameters that cannot be addressed by traditional biochemistry. DNA is one of the most studied biomolecules. Imaging single DNA molecules eliminates important limitations of classical techniques and provides a new method for testing polymer dynamics and DNA–protein interactions. Here we review some applications of this new approach to physical and biological problems, focusing on videomicroscopy observations of individual DNA chains extended in a shear flow. We will first describe data obtained on the stretching, relaxation and dynamics of a single tethered polymer in a shear flow, to demonstrate that the deformation of sheared tethered chains is partially governed by the thermally driven fluctuations of the chain transverse to the flow direction. Next, we will show how single-molecule videomicroscopy can be used to study in real time DNA folding into chromatin, a complex association of DNA and proteins responsible for the packaging of DNA in the nucleus of an eukaryotic cell.

Full Text

The Full Text of this article is available as a PDF (261.2 KB).

References

  • 1.Marko J.F., & Siggia E. D. (1995) Stretching DNA. Macromolecules, 28, 8759. [Google Scholar]
  • 2.Perkins T.T., Quake S.R., Smith D.E., & Chu S. (1994) Relaxation of a single DNA molecule observed by optical microscopy. Science, 264, 822. [DOI] [PubMed] [Google Scholar]
  • 3.Manneville S., Cluzel P., Viovy J.-L., Chatenay D., & Caron F. (1996) Evidence for the universal scaling behaviour of a freely relaxing DNA molecule. Europhys. Lett., 36, 413. [Google Scholar]
  • 4.Brochard F. (1993) Deformations of one tethered chain in strong flows. Europhys. Lett., 23, 105. [Google Scholar]
  • 5.Larson R.G., Perkins T.T., Smith D. E., & Chu S. (1997) Hydrodynamics of a DNA molecule in a flow field. Phys. Rev. E., 55, 1794. [Google Scholar]
  • 6.Perkins T. T., Smith D. E., & Chu S. (1997) Single polymer dynamics in an elongational flow. Science, 276, 2026. [DOI] [PubMed] [Google Scholar]
  • 7.Smith D. E., & Chu S. (1998) Response of flexible polymers to a sudden elongational flow. Science, 281, 1335. [DOI] [PubMed] [Google Scholar]
  • 8.Smith S. B., Finzi L, & Bustamante C. (1992) Direct mechanical measurement of the elasticity of single DNA molecules by using magnetic beads. Science, 258, 1122. [DOI] [PubMed] [Google Scholar]
  • 9.Strick T. R., Allemand J-F., Bensimon D., Bensimon A., & Croquette V. (1996) The elasticity of a single supercoiled DNA molecule. Science, 271, 1835. [DOI] [PubMed] [Google Scholar]
  • 10.Cluzel P., Lebrun A., Heller C., Lavery R., Viovy J-L., Chatenay D., & Caron F. (1996) DNA†: an extensible molecule. Science, 271, 792. [DOI] [PubMed] [Google Scholar]
  • 11.Smith S. B., Cui Y., & Bustamante C. (1996) Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules. Science, 271, 795. [DOI] [PubMed] [Google Scholar]
  • 12.Léger J-F., Robert J., Bourdieu L., Chatenay D., & Marko J. (1998) RecA binding to a single double-stranded DNA molecule: a possible role of DNA conformational fluctuations. Proc. Natl. Acad. Sci., 95, 12295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Shivashankar G. V., Feingold M., Krichevsky O., & Libchaber A. (1999) RecA polymerisation on double-stranded DNA by using single-molecule manipulation†: the role of ATP hydrolysis. Proc. Natl. Acad. Sci., 96, 7916. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Hegner M., Smith S. B., & Bustamante C. (1999) Polymerisation and mechanical properties of single RecA-DNA filaments. Proc. Natl. Acad. Sci., 96, 10109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Yin H., Wang M. D., Svoboda K., Landick R., Block S. M., & Gelles J. (1995) Transcription against an applied force. Science, 270, 1653. [DOI] [PubMed] [Google Scholar]
  • 16.Wuite G. J., Smith S. B., Young M., Keller D., & Bustamante C. (2000) Single molecule studies of the effect of template tension on T7 DNA polymerase activity. Nature, 404, 103. [DOI] [PubMed] [Google Scholar]
  • 17.Davenport J. R., Wuite G. J., Landick R., & Bustamante C. (2000) Single-molecule study of transcriptional pausing and arrest by E. coli RNA polymerase. Science, 287, 2497. [DOI] [PubMed] [Google Scholar]
  • 18.Strick T.R., Croquette V., & Bensimon D. (2000) Single-molecule analysis of DNA uncoiling by type II topoisomerase. Nature, 404, 901. [DOI] [PubMed] [Google Scholar]
  • 19.Cui Y., & Bustamante C. (2000) Pulling a single chromatin fiber reveals the forces that maintain its higher-order structure. Proc. Natl. Acad. Sci., 97, 127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Xia Y., & Whitesides G. M. (1998) Soft lithography. Angew. Chem. Int. Ed., 37, 550. [DOI] [PubMed] [Google Scholar]
  • 21.Ladoux B, & Doyle P. S. (2000) Stretching tethered DNA chains in shear flow. Europhys. Lett., 52, 511. [Google Scholar]
  • 22.Larson R.G., Hu H., Smith D. E., & Chu S. (1999) Brownian dynamics simulations of a DNA molecule in an extensional flow field, J. Rheol., 43, 267. [Google Scholar]
  • 23.Doyle P. S., Ladoux B, & Viovy J-L. (2000) Dynamics of a tethered polymer in shear flow, Phys. Rev. Lett., 84, 4769. [DOI] [PubMed] [Google Scholar]
  • 24.Perkins T. T., Smith D.E., Larson R. G., & Chu S. (1995) Stretching of a single tethered polymer in an uniform flow. Science, 268, 83. [DOI] [PubMed] [Google Scholar]
  • 25.Taylor G. I. (1953) Dispersion of soluble matter in solvent flowing slowly through a tube, Proc. R. Soc. London A, 219, 186. [Google Scholar]
  • 26.Van Holde K.E. (1988) In Chromatin. Springer-Verlag, New-York. [Google Scholar]
  • 27.Luger K., Mader A.W., Richmond R.K., Sargent D. F., & Richmond T. J. (1997) Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature, 389, 251. [DOI] [PubMed] [Google Scholar]
  • 28.Wolffe A.P. (1998) Chromatin structure and function, 3rd edn, Academic Press, New York. [Google Scholar]
  • 29.Ladoux B., Quivy J-P., Doyle P. S., du Roure O., Almouzni G., & Viovy J-L. (2000) Fast Kinetics of chromatin assembly revealed by single-molecule videomicroscopy and scanning force microscopy. Proc. Natl. Acad. Sci., 97, 14251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Kaufman P.D., & Almouzni G. (2001) In Chromatin Structure and Gene Expression: Frontiers in Molecular Biology, 2nd edn, Elgin S., Workman J. (eds), Oxford University Press. [Google Scholar]
  • 31.Stein A., Whitlock J.P. Jr., & Bina M. (1979) Acidic polypeptides can assemble both histones and chromatin in vitro at physiological ionic strength. Proc. Natl. Acad. Sci., 76, 5000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Leuba S.H., Yang G., Robert C., van Holde K., Zlatanova J., & Bustamante C. (1994) Three-dimensional structure of extended chromatin fibres as revealed by tapping-mode scanning force microscopy. Proc. Natl. Acad. Sci. USA, 91, 11621. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Science Progress are provided here courtesy of SAGE Publications

RESOURCES