Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1992 Jan;98(1):331–336. doi: 10.1104/pp.98.1.331

Purification and Properties of Glyoxysomal Cuprozinc Superoxide Dismutase from Watermelon Cotyledons (Citrullus vulgaris Schrad) 1

Pablo Bueno 1, Luis A del Río 1
PMCID: PMC1080187  PMID: 16668632

Abstract

A glyoxysomal copper,zinc-containing superoxide dismutase (EC 1.15.1.1) was purified to homogeneity, for the first time, from watermelon cotyledons (Citrullus vulgaris Schrad.). The stepwise purification procedure consisted of acetone precipitation, batch anion-exchange chromatography, anion-exchange Fast Protein Liquid Chromatography and gel-filtration column chromatography. Pure copper,zinc-superoxide dismutase (Cu,Zn-SOD II) had a specific activity of 1211 units per milligram protein and was purified 400-fold, with a yield of 8 micrograms enzyme per gram cotyledon. The glyoxysomal Cu,Zn-SOD had a relative molecular weight of about 33,000 and was composed of two equal subunits of 16,500 Daltons. Metal analysis showed that the enzyme, unlike other Cu,Zn-SODs, contained 1 gram-atom Cu and 1 gram-atom Zn per mole dimer. No iron and manganese were detected. Ultraviolet and visible absorption spectra were reminiscent of other copper,zinc-superoxide dismutases.

Full text

PDF
333

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aebi H. Catalase in vitro. Methods Enzymol. 1984;105:121–126. doi: 10.1016/s0076-6879(84)05016-3. [DOI] [PubMed] [Google Scholar]
  2. Barkley K. B., Gregory E. M. Tetrameric manganese superoxide dismutases from anaerobic Actinomyces. Arch Biochem Biophys. 1990 Jul;280(1):192–200. doi: 10.1016/0003-9861(90)90535-7. [DOI] [PubMed] [Google Scholar]
  3. Baum J. A., Chandlee J. M., Scandalios J. G. Purification and Partial Characterization of a Genetically-Defined Superoxide Dismutase (SOD-1) Associated with Maize Chloroplasts. Plant Physiol. 1983 Sep;73(1):31–35. doi: 10.1104/pp.73.1.31. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Baum J. A., Scandalios J. G. Isolation and characterization of the cytosolic and mitochondrial superoxide dismutases of maize. Arch Biochem Biophys. 1981 Feb;206(2):249–264. doi: 10.1016/0003-9861(81)90089-8. [DOI] [PubMed] [Google Scholar]
  5. Beauchamp C., Fridovich I. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem. 1971 Nov;44(1):276–287. doi: 10.1016/0003-2697(71)90370-8. [DOI] [PubMed] [Google Scholar]
  6. DAVIS B. J. DISC ELECTROPHORESIS. II. METHOD AND APPLICATION TO HUMAN SERUM PROTEINS. Ann N Y Acad Sci. 1964 Dec 28;121:404–427. doi: 10.1111/j.1749-6632.1964.tb14213.x. [DOI] [PubMed] [Google Scholar]
  7. Droillard M. J., Paulin A. Isozymes of Superoxide Dismutase in Mitochondria and Peroxisomes Isolated from Petals of Carnation (Dianthus caryophyllus) during Senescence. Plant Physiol. 1990 Nov;94(3):1187–1192. doi: 10.1104/pp.94.3.1187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Duke M. V., Salin M. L. Purification and characterization of an iron-containing superoxide dismutase from a eucaryote, Ginkgo biloba. Arch Biochem Biophys. 1985 Nov 15;243(1):305–314. doi: 10.1016/0003-9861(85)90800-8. [DOI] [PubMed] [Google Scholar]
  9. Federico R., Medda R., Floris G. Superoxide Dismutase from Lens esculenta: Purification and Properties. Plant Physiol. 1985 Jun;78(2):357–358. doi: 10.1104/pp.78.2.357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Giannopolitis C. N., Ries S. K. Superoxide dismutases: I. Occurrence in higher plants. Plant Physiol. 1977 Feb;59(2):309–314. doi: 10.1104/pp.59.2.309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  12. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  13. McCord J. M., Fridovich I. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem. 1969 Nov 25;244(22):6049–6055. [PubMed] [Google Scholar]
  14. Puget K., Michelson A. M. Isolation of a new copper-containing superoxide dismutase bacteriocuprein. Biochem Biophys Res Commun. 1974 Jun 4;58(3):830–838. doi: 10.1016/s0006-291x(74)80492-4. [DOI] [PubMed] [Google Scholar]
  15. Reisner A. H. Gel protein stains: a rapid procedure. Methods Enzymol. 1984;104:439–441. doi: 10.1016/s0076-6879(84)04110-0. [DOI] [PubMed] [Google Scholar]
  16. Sandalio L. M., Del Río L. A. Intraorganellar distribution of superoxide dismutase in plant peroxisomes (glyoxysomes and leaf peroxisomes). Plant Physiol. 1988 Dec;88(4):1215–1218. doi: 10.1104/pp.88.4.1215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. del Río L. A., Sandalio L. M., Palma J. M. A new cellular function for peroxisomes related to oxygen free radicals? Experientia. 1990 Oct 15;46(10):989–992. doi: 10.1007/BF01940651. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES