Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1978 May;61(5):723–730. doi: 10.1104/pp.61.5.723

Labeling of the Plasma Membrane of Pea Cells by a Surface-localized Glucan Synthetase 1

Robin L Anderson 1, Peter M Ray 1
PMCID: PMC1091965  PMID: 16660373

Abstract

When radioactive UDP-glucose is supplied to 1-millimeter-thick slices of pea (Pisum sativum) stem tissue, radioactive glucose becomes incorporated into membrane-bound polysaccharides. Evidence is given that this incorporation does not result from breakdown of UDP-glucose and utilization of the resultant free glucose, and that the incorporation most likely takes place at the cell surface, leading to a specific labeling of the plasma membrane. The properties of the plasma membrane that are indicated by this method of recognition, including the association of K+-stimulated ATPase activity with the plasma membrane, resemble properties inferred using other approaches. The membrane-associated polysaccharide product formed from UDP-glucose is largely 1,3-linked glucan, presumably callose, and does not behave as a precursor of cell wall polymers. No substantial amount of cellulose is formed from UDP-glucose in this procedure, even though these cells incorporate free glucose rapidly into cellulose. This synthetase system that uses external UDP-glucose may serve for formation of wound callose.

Full text

PDF
724

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Colbeau A., Nachbaur J., Vignais P. M. Enzymic characterization and lipid composition of rat liver subcellular membranes. Biochim Biophys Acta. 1971 Dec 3;249(2):462–492. doi: 10.1016/0005-2736(71)90123-4. [DOI] [PubMed] [Google Scholar]
  2. Dowler M. J., Rayle D. L. Auxin Does Not Alter the Permeability of Pea Segments to Tritium-labeled Water. Plant Physiol. 1974 Feb;53(2):229–232. doi: 10.1104/pp.53.2.229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Galbraith D. W., Northcote D. H. The isolation of plasma membrane from protoplasts of soybean suspension cultures. J Cell Sci. 1977 Apr;24:295–310. doi: 10.1242/jcs.24.1.295. [DOI] [PubMed] [Google Scholar]
  4. Hardin J. W., Cherry J. H., Morré D. J., Lembi C. A. Enhancement of RNA polymerase activity by a factor released by auxin from plasma membrane. Proc Natl Acad Sci U S A. 1972 Nov;69(11):3146–3150. doi: 10.1073/pnas.69.11.3146. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Heiniger U., Delmer D. P. UDP-glucose: Glucan Synthetase in Developing Cotton Fibers: II. Structure of the Reaction Product. Plant Physiol. 1977 Apr;59(4):719–723. doi: 10.1104/pp.59.4.719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hodges T. K., Leonard R. T., Bracker C. E., Keenan T. W. Purification of an ion-stimulated adenosine triphosphatase from plant roots: association with plasma membranes. Proc Natl Acad Sci U S A. 1972 Nov;69(11):3307–3311. doi: 10.1073/pnas.69.11.3307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hodges T. K., Leonard R. T. Purification of a plasma membrane-bound adenosine triphosphatase from plant roots. Methods Enzymol. 1974;32:392–406. doi: 10.1016/0076-6879(74)32039-3. [DOI] [PubMed] [Google Scholar]
  8. Labavitch J. M., Ray P. M. Turnover of cell wall polysaccharides in elongating pea stem segments. Plant Physiol. 1974 May;53(5):669–673. doi: 10.1104/pp.53.5.669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Leonard R. T., Hansen D., Hodges T. K. Membrane-bound Adenosine Triphosphatase Activities of Oat Roots. Plant Physiol. 1973 Apr;51(4):749–754. doi: 10.1104/pp.51.4.749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Leonard R. T., Vanderwoude W. J. Isolation of plasma membranes from corn roots by sucrose density gradient centrifugation: an anomalous effect of ficoll. Plant Physiol. 1976 Jan;57(1):105–114. doi: 10.1104/pp.57.1.105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lin W., Wagner G. J., Siegelman H. W., Hind G. Membrane-bound ATPase of intact vacuoles and tonoplasts isolated from mature plant tissue. Biochim Biophys Acta. 1977 Feb 14;465(1):110–117. doi: 10.1016/0005-2736(77)90359-5. [DOI] [PubMed] [Google Scholar]
  12. MANN G. V. A method for measurement of cholesterol in blood serum. Clin Chem. 1961 Jun;7:275–284. [PubMed] [Google Scholar]
  13. Quail P. H., Browning A. Failure of lactoperoxidase to iodinate specifically the plasma membrane of cucurbita tissue segments. Plant Physiol. 1977 Apr;59(4):759–766. doi: 10.1104/pp.59.4.759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. REESE E. T., MANDELS M. Beta-D-1, 3 Glucanases in fungi. Can J Microbiol. 1959 Apr;5(2):173–185. doi: 10.1139/m59-022. [DOI] [PubMed] [Google Scholar]
  15. REESE E. T., SMAKULA E., PERLIN A. S. Enzymic production of cellotriose from cellulose. Arch Biochem Biophys. 1959 Nov;85:171–175. doi: 10.1016/0003-9861(59)90460-6. [DOI] [PubMed] [Google Scholar]
  16. Ray P. M. Auxin-binding Sites of Maize Coleoptiles Are Localized on Membranes of the Endoplasmic Reticulum. Plant Physiol. 1977 Apr;59(4):594–599. doi: 10.1104/pp.59.4.594. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Ray P. M. Regulation of beta-Glucan Synthetase Activity by Auxin in Pea Stem Tissue: I. Kinetic Aspects. Plant Physiol. 1973 Apr;51(4):601–608. doi: 10.1104/pp.51.4.601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Ray P. M., Shininger T. L., Ray M. M. ISOLATION OF beta-GLUCAN SYNTHETASE PARTICLES FROM PLANT CELLS AND IDENTIFICATION WITH GOLGI MEMBRANES. Proc Natl Acad Sci U S A. 1969 Oct;64(2):605–612. doi: 10.1073/pnas.64.2.605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Roland J. C., Lembi C. A., Morré D. J. Phosphotungstic acid-chromic acid as a selective electron-dense stain for plasma membranes of plant cells. Stain Technol. 1972 Jul;47(4):195–200. doi: 10.3109/10520297209116484. [DOI] [PubMed] [Google Scholar]
  20. Rouser G., Siakotos A. N., Fleischer S. Quantitative analysis of phospholipids by thin-layer chromatography and phosphorus analysis of spots. Lipids. 1966 Jan;1(1):85–86. doi: 10.1007/BF02668129. [DOI] [PubMed] [Google Scholar]
  21. Rungie J. M., Wiskich J. T. Salt-stimulated Adenosine Triphosphatase from Smooth Microsomes of Turnip. Plant Physiol. 1973 Jun;51(6):1064–1068. doi: 10.1104/pp.51.6.1064. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Shore G., Maclachlan G. A. The site of cellulose synthesis. Hormone treatment alters the intracellular location of alkali-insoluble beta-1,4-glucan (cellulose) synthetase activities. J Cell Biol. 1975 Mar;64(3):557–571. doi: 10.1083/jcb.64.3.557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Shore G., Raymond Y., Maclachlan G. A. The Site of Cellulose Synthesis: Cell Surface and Intracellular beta-1, 4-Glucan (Cellulose) Synthetase Activities in Relation to the Stage and Direction of Cell Growth. Plant Physiol. 1975 Jul;56(1):34–38. doi: 10.1104/pp.56.1.34. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. TREVELYAN W. E., PROCTER D. P., HARRISON J. S. Detection of sugars on paper chromatograms. Nature. 1950 Sep 9;166(4219):444–445. doi: 10.1038/166444b0. [DOI] [PubMed] [Google Scholar]
  25. Tsai C. M., Hassid W. Z. Substrate Activation of beta-(1 --> 3) Glucan Synthetase and Its Effect on the Structure of beta-Glucan Obtained from UDP-d-glucose and Particulate Enzyme of Oat Coleoptiles. Plant Physiol. 1973 Jun;51(6):998–1001. doi: 10.1104/pp.51.6.998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Van Der Woude W. J., Lembi C. A., Morré D. J. beta-Glucan Synthetases of Plasma Membrane and Golgi Apparatus from Onion Stem. Plant Physiol. 1974 Sep;54(3):333–340. doi: 10.1104/pp.54.3.333. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES