Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1993 Feb 1;289(Pt 3):637–640. doi: 10.1042/bj2890637

Multiple carbohydrate moieties on the Na+/H+ exchanger.

R S Haworth 1, O Fröhlich 1, L Fliegel 1
PMCID: PMC1132222  PMID: 8382044

Abstract

Affinity-purified antibodies against the C-terminal region of the Na+/H+ exchanger (NHE-1) were used to analyse the carbohydrate moiety of the protein. The Na+/H+ exchanger in human placental brush-border membranes has an apparent molecular mass of 105 kDa. Incubation of intact or detergent-solubilized membranes with glycopeptidase F removed the carbohydrate moiety and increased the apparent mobility of the exchanger. Digestion with endoglycosidase-F caused a similar change in mobility, but endoglycosidase-H had no effect, suggesting that the placental Na+/H+ exchanger is a glycoprotein of the biantennary complex type. Removal of the carbohydrate moiety with glycopeptidase F had no effect on the ability of the protein to promote the exchange of Na+ for H+, and had no detectable effect on the sensitivity of the exchanger to trypsin. Limited digestion with glycopeptidase F and neuraminidase indicated the presence of two intermediate forms between the fully glycosylated and the deglycosylated protein. This suggests the presence of at least two, and possibly three, N-linked carbohydrate moieties.

Full text

PDF
638

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Balkovetz D. F., Leibach F. H., Mahesh V. B., Devoe L. D., Cragoe E. J., Jr, Ganapathy V. Na+-H+ exchanger of human placental brush-border membrane: identification and characterization. Am J Physiol. 1986 Dec;251(6 Pt 1):C852–C860. doi: 10.1152/ajpcell.1986.251.6.C852. [DOI] [PubMed] [Google Scholar]
  2. Casavola V., Helmle-Kolb C., Murer H. Separate regulatory control of apical and basolateral Na+/H+ exchange in renal epithelial cells. Biochem Biophys Res Commun. 1989 Dec 15;165(2):833–837. doi: 10.1016/s0006-291x(89)80041-5. [DOI] [PubMed] [Google Scholar]
  3. Danielsen E. M., Cowell G. M., Poulsen S. S. Biosynthesis of intestinal microvillar proteins. Role of the Golgi complex and microtubules. Biochem J. 1983 Oct 15;216(1):37–42. doi: 10.1042/bj2160037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Fliegel L., Haworth R. S., Dyck J. R. Characterization of the placental brush border membrane Na+/H+ exchanger: identification of thiol-dependent transitions in apparent molecular size. Biochem J. 1993 Jan 1;289(Pt 1):101–107. doi: 10.1042/bj2890101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fliegel L., Walsh M. P., Singh D., Wong C., Barr A. Phosphorylation of the C-terminal domain of the Na+/H+ exchanger by Ca2+/calmodulin-dependent protein kinase II. Biochem J. 1992 Feb 15;282(Pt 1):139–145. doi: 10.1042/bj2820139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Grinstein S., Rotin D., Mason M. J. Na+/H+ exchange and growth factor-induced cytosolic pH changes. Role in cellular proliferation. Biochim Biophys Acta. 1989 Jan 18;988(1):73–97. doi: 10.1016/0304-4157(89)90004-x. [DOI] [PubMed] [Google Scholar]
  7. Haggerty J. G., Agarwal N., Reilly R. F., Adelberg E. A., Slayman C. W. Pharmacologically different Na/H antiporters on the apical and basolateral surfaces of cultured porcine kidney cells (LLC-PK1). Proc Natl Acad Sci U S A. 1988 Sep;85(18):6797–6801. doi: 10.1073/pnas.85.18.6797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kulanthaivel P., Leibach F. H., Mahesh V. B., Cragoe E. J., Jr, Ganapathy V. The Na(+)-H+ exchanger of the placental brush-border membrane is pharmacologically distinct from that of the renal brush-border membrane. J Biol Chem. 1990 Jan 25;265(3):1249–1252. [PubMed] [Google Scholar]
  9. Michalak M., Fliegel L., Wlasichuk K. Isolation and characterization of calcium binding glycoproteins of cardiac sarcolemmal vesicles. J Biol Chem. 1990 Apr 5;265(10):5869–5874. [PubMed] [Google Scholar]
  10. Olden K., Parent J. B., White S. L. Carbohydrate moieties of glycoproteins. A re-evaluation of their function. Biochim Biophys Acta. 1982 May 12;650(4):209–232. doi: 10.1016/0304-4157(82)90017-x. [DOI] [PubMed] [Google Scholar]
  11. Orlowski J., Kandasamy R. A., Shull G. E. Molecular cloning of putative members of the Na/H exchanger gene family. cDNA cloning, deduced amino acid sequence, and mRNA tissue expression of the rat Na/H exchanger NHE-1 and two structurally related proteins. J Biol Chem. 1992 May 5;267(13):9331–9339. [PubMed] [Google Scholar]
  12. Pedemonte C. H., Sachs G., Kaplan J. H. An intrinsic membrane glycoprotein with cytosolically oriented n-linked sugars. Proc Natl Acad Sci U S A. 1990 Dec;87(24):9789–9793. doi: 10.1073/pnas.87.24.9789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ross W., Bertrand W., Morrison A. A photoactivatable probe for the Na+/H+ exchanger cross-links a 66-kDa renal brush border membrane protein. J Biol Chem. 1990 Apr 5;265(10):5341–5344. [PubMed] [Google Scholar]
  14. Sairam M. R. Role of carbohydrates in glycoprotein hormone signal transduction. FASEB J. 1989 Jun;3(8):1915–1926. doi: 10.1096/fasebj.3.8.2542111. [DOI] [PubMed] [Google Scholar]
  15. Sardet C., Counillon L., Franchi A., Pouysségur J. Growth factors induce phosphorylation of the Na+/H+ antiporter, glycoprotein of 110 kD. Science. 1990 Feb 9;247(4943):723–726. doi: 10.1126/science.2154036. [DOI] [PubMed] [Google Scholar]
  16. Sardet C., Franchi A., Pouysségur J. Molecular cloning, primary structure, and expression of the human growth factor-activatable Na+/H+ antiporter. Cell. 1989 Jan 27;56(2):271–280. doi: 10.1016/0092-8674(89)90901-x. [DOI] [PubMed] [Google Scholar]
  17. Stewart J. R., Kenny A. J. Proteins of the kidney microvillar membrane. Effects of monensin, vinblastine, swainsonine and glucosamine on the processing and assembly of endopeptidase-24.11 and dipeptidyl peptidase IV in pig kidney slices. Biochem J. 1984 Dec 1;224(2):559–568. doi: 10.1042/bj2240559. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES