Abstract
Protein catabolism in fibroblasts cultured from the skin of normal individuals and of patients with mucolipidosis II (I-cell disease) and several other lysosomal storage diseases was examined by metabolic labelling with [3H]leucine and following the fate of radioactive proteins in pulse-chase experiments. In mucolipidosis II cells, overall protein degradative rates were found to be distinctly lower than in normal control cells. To distinguish lysosomal from non-lysosomal degradation, labelling experiments were carried out in the presence and absence of 10 mM NH4Cl, an inhibitor of lysosomal function. It was found that mucolipidosis II fibroblasts exhibited a markedly reduced rate of lysosomal protein degradation, whereas the rate of nonlysosomal degradation appeared normal. Serum and amino acid starvation led to a marked increase in lysosomal protein degradation in normal cells, but had only a minimal effect on that in mucolipidosis II fibroblasts. The specific activities of cathepsins B, H and L were profoundly diminished in all mucolipidosis II cell lines tested. Lysosomal protein degradation in a mucolipidosis III cell line was impaired to a similar degree as in mucolipidosis II cells, whereas it was decreased to a lesser extent in fibroblasts from patients with mucopolysaccharidoses I and VI, galactosialidosis and GM1-gangliosidosis. We conclude that fibroblasts from patients with mucolipidosis II and III have a severely compromised capacity for endogenous lysosomal protein degradation that appears to result from multiple cathepsin deficiency. This lysosomal defect is likely to have pathophysiological consequences.
Full text
PDF![577](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57f9/1134919/e43503fb5295/biochemj00101-0242.png)
![578](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57f9/1134919/c4ca4fd2d3b6/biochemj00101-0243.png)
![579](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57f9/1134919/a011ea083a07/biochemj00101-0244.png)
![580](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57f9/1134919/55a2947527c1/biochemj00101-0245.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barrett A. J., Kirschke H. Cathepsin B, Cathepsin H, and cathepsin L. Methods Enzymol. 1981;80(Pt 100):535–561. doi: 10.1016/s0076-6879(81)80043-2. [DOI] [PubMed] [Google Scholar]
- Bienkowski R. S., Ripley C. R., Gitzelmann R., Steinmann B. Collagen degradation in I-cells is normal. Biochem Biophys Res Commun. 1990 Apr 30;168(2):479–484. doi: 10.1016/0006-291x(90)92346-2. [DOI] [PubMed] [Google Scholar]
- Bohley P., Seglen P. O. Proteases and proteolysis in the lysosome. Experientia. 1992 Feb 15;48(2):151–157. doi: 10.1007/BF01923508. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Cockle S. M., Dean R. T. An abnormality in intracellular protein degradation in fibroblasts from patients with I-cell disease. Clin Chim Acta. 1984 Jul 31;140(3):257–265. doi: 10.1016/0009-8981(84)90207-9. [DOI] [PubMed] [Google Scholar]
- Freshney R. I., Paul J., Kane I. M. Assay of anti-cancer drugs in tissue culture: conditions affecting their ability to incorporate 3H-leucine after drug treatment. Br J Cancer. 1975 Jan;31(1):89–99. doi: 10.1038/bjc.1975.11. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hall N. A., Lake B. D., Dewji N. N., Patrick A. D. Lysosomal storage of subunit c of mitochondrial ATP synthase in Batten's disease (ceroid-lipofuscinosis). Biochem J. 1991 Apr 1;275(Pt 1):269–272. doi: 10.1042/bj2750269. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hanewinkel H., Glössl J., Kresse H. Biosynthesis of cathepsin B in cultured normal and I-cell fibroblasts. J Biol Chem. 1987 Sep 5;262(25):12351–12355. [PubMed] [Google Scholar]
- Hendil K. B., Lauridsen A. M., Seglen P. O. Both endocytic and endogenous protein degradation in fibroblasts is stimulated by serum/amino acid deprivation and inhibited by 3-methyladenine. Biochem J. 1990 Dec 15;272(3):577–581. doi: 10.1042/bj2720577. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Knowles S. E., Ballard F. J. Selective control of the degradation of normal and aberrant proteins in Reuber H35 hepatoma cells. Biochem J. 1976 Jun 15;156(3):609–617. doi: 10.1042/bj1560609. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kopitz J., Kisen G. O., Gordon P. B., Bohley P., Seglen P. O. Nonselective autophagy of cytosolic enzymes by isolated rat hepatocytes. J Cell Biol. 1990 Sep;111(3):941–953. doi: 10.1083/jcb.111.3.941. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Langner J., Wakil A., Zimmermann M., Ansorge S., Bohley P., Kirschke H., Wiederanders B. Aktivitätsbestimmung proteolytischer Enzyme mit Azokasein als Substrat. Acta Biol Med Ger. 1973;31(1):1–18. [PubMed] [Google Scholar]
- Palmer D. N., Fearnley I. M., Walker J. E., Hall N. A., Lake B. D., Wolfe L. S., Haltia M., Martinus R. D., Jolly R. D. Mitochondrial ATP synthase subunit c storage in the ceroid-lipofuscinoses (Batten disease). Am J Med Genet. 1992 Feb 15;42(4):561–567. doi: 10.1002/ajmg.1320420428. [DOI] [PubMed] [Google Scholar]
- Palmer D. N., Martinus R. D., Cooper S. M., Midwinter G. G., Reid J. C., Jolly R. D. Ovine ceroid lipofuscinosis. The major lipopigment protein and the lipid-binding subunit of mitochondrial ATP synthase have the same NH2-terminal sequence. J Biol Chem. 1989 Apr 5;264(10):5736–5740. [PubMed] [Google Scholar]
- Seglen P. O., Gordon P. B., Grinde B., Solheim A., Kovács A. L., Poli A. Inhibitors and pathways of hepatocytic protein degradation. Acta Biol Med Ger. 1981;40(10-11):1587–1598. [PubMed] [Google Scholar]
- Seglen P. O. Inhibitors of lysosomal function. Methods Enzymol. 1983;96:737–764. doi: 10.1016/s0076-6879(83)96063-9. [DOI] [PubMed] [Google Scholar]
- Williams J. C., Weinstein D. B., Miller A. L., Steinberg D. Defective catabolism of low-density lipoprotein by fibroblasts from patients with I-cell disease. Biochem J. 1982 Jan 15;202(1):183–190. doi: 10.1042/bj2020183. [DOI] [PMC free article] [PubMed] [Google Scholar]