Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1988 Dec 15;256(3):689–695. doi: 10.1042/bj2560689

Role of the phosphorylation of red blood cell membrane proteins.

P Boivin 1
PMCID: PMC1135471  PMID: 3066352

Full text

PDF
689

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agre P., Gardner K., Bennett V. Association between human erythrocyte calmodulin and the cytoplasmic surface of human erythrocyte membranes. J Biol Chem. 1983 May 25;258(10):6258–6265. [PubMed] [Google Scholar]
  2. Anderson J. M., Tyler J. M. State of spectrin phosphorylation does not affect erythrocyte shape or spectrin binding to erythrocyte membranes. J Biol Chem. 1980 Feb 25;255(4):1259–1265. [PubMed] [Google Scholar]
  3. Anderson J. P., Morrow J. S. The interaction of calmodulin with human erythrocyte spectrin. Inhibition of protein 4.1-stimulated actin binding. J Biol Chem. 1987 May 5;262(13):6365–6372. [PubMed] [Google Scholar]
  4. Anderson R. A., Lovrien R. E. Glycophorin is linked by band 4.1 protein to the human erythrocyte membrane skeleton. Nature. 1984 Feb 16;307(5952):655–658. doi: 10.1038/307655a0. [DOI] [PubMed] [Google Scholar]
  5. Anderson R. A., Marchesi V. T. Regulation of the association of membrane skeletal protein 4.1 with glycophorin by a polyphosphoinositide. Nature. 1985 Nov 21;318(6043):295–298. doi: 10.1038/318295a0. [DOI] [PubMed] [Google Scholar]
  6. Avruch J., Fairbanks G. Phosphorylation of endogenous substrates by erythrocyte membrane protein kinases. I. A monovalent cation-stimulated reaction. Biochemistry. 1974 Dec 31;13(27):5507–5514. doi: 10.1021/bi00724a009. [DOI] [PubMed] [Google Scholar]
  7. Birchmeier W., Singer S. J. On the mechanism of ATP-induced shape changes in human erythrocyte membranes. II. The role of ATP. J Cell Biol. 1977 Jun;73(3):647–659. doi: 10.1083/jcb.73.3.647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Boivin P., Galand C., Bertrand O. Properties of a membrane-bound tyrosine kinase phosphorylating the cytosolic fragment of the red cell membrane band 3 protein. Biochim Biophys Acta. 1986 Aug 21;860(2):243–252. doi: 10.1016/0005-2736(86)90520-1. [DOI] [PubMed] [Google Scholar]
  9. Boivin P., Galand C., Bertrand O. Protein band 3 phosphotyrosyl phosphatase. Purification and characterization. Int J Biochem. 1987;19(7):613–618. doi: 10.1016/0020-711x(87)90227-8. [DOI] [PubMed] [Google Scholar]
  10. Boivin P., Galand C. Compartimentalization of spectrin-phosphorylating enzyme in human erythrocytes. Biochem Biophys Res Commun. 1980 Mar 13;93(1):24–28. doi: 10.1016/s0006-291x(80)80240-3. [DOI] [PubMed] [Google Scholar]
  11. Boivin P., Galand C. Purification and characterization of an adenosine cyclic 3':5' monophosphate-dependent protein kinase from human erythrocyte membrane. Biochem Biophys Res Commun. 1978 Mar 30;81(2):473–480. doi: 10.1016/0006-291x(78)91558-9. [DOI] [PubMed] [Google Scholar]
  12. Boivin P., Galand C. The human red cell acid phosphatase is a phosphotyrosine protein phosphatase which dephosphorylates the membrane protein band 3. Biochem Biophys Res Commun. 1986 Jan 29;134(2):557–564. doi: 10.1016/s0006-291x(86)80456-9. [DOI] [PubMed] [Google Scholar]
  13. Boivin P., Garbarz M., Galand C. Casein kinase from human erythrocyte membrane, purification characterization and comparison with the cytosolic enzyme. Int J Biochem. 1980;12(3):445–449. doi: 10.1016/0020-711x(80)90126-3. [DOI] [PubMed] [Google Scholar]
  14. Brenner S. L., Korn E. D. Spectrin-actin interaction. Phosphorylated and dephosphorylated spectrin tetramer cross-link F-actin. J Biol Chem. 1979 Sep 10;254(17):8620–8627. [PubMed] [Google Scholar]
  15. Clari G., Brunati A. M., Moret V. Membrane-bound phosphotyrosyl-protein phosphatase activity in human erythrocytes. Dephosphorylation of membrane band 3 protein. Biochem Biophys Res Commun. 1987 Jan 30;142(2):587–594. doi: 10.1016/0006-291x(87)90314-7. [DOI] [PubMed] [Google Scholar]
  16. Cohen A. M., Liu S. C., Derick L. H., Palek J. Ultrastructural studies of the interaction of spectrin with phosphatidylserine liposomes. Blood. 1986 Oct;68(4):920–926. [PubMed] [Google Scholar]
  17. Cohen C. M., Foley S. F. Phorbol ester- and Ca2+-dependent phosphorylation of human red cell membrane skeletal proteins. J Biol Chem. 1986 Jun 15;261(17):7701–7709. [PubMed] [Google Scholar]
  18. Dekowski S. A., Rybicki A., Drickamer K. A tyrosine kinase associated with the red cell membrane phosphorylates band 3. J Biol Chem. 1983 Mar 10;258(5):2750–2753. [PubMed] [Google Scholar]
  19. Drickamer L. K. Fragmentation of the 95,000-dalton transmembrane polypeptide in human erythrocyte membranes. J Biol Chem. 1976 Sep 10;251(17):5115–5123. [PubMed] [Google Scholar]
  20. Dzandu J. K., Deh M. E., Kiener P. Phosphorylation of glycophorin A in membranes of intact human erythrocytes. Biochem Biophys Res Commun. 1985 Mar 29;127(3):878–884. doi: 10.1016/s0006-291x(85)80025-5. [DOI] [PubMed] [Google Scholar]
  21. Eder P. S., Soong C. J., Tao M. Phosphorylation reduces the affinity of protein 4.1 for spectrin. Biochemistry. 1986 Apr 8;25(7):1764–1770. doi: 10.1021/bi00355a047. [DOI] [PubMed] [Google Scholar]
  22. Fairbanks G., Avruch J. Phosphorylation of endogenous substrates by erythrocyte membrane protein kinases. II. Cyclic adenosine monophosphate-stimulated reactions. Biochemistry. 1974 Dec 31;13(27):5514–5521. doi: 10.1021/bi00724a010. [DOI] [PubMed] [Google Scholar]
  23. Faquin W. C., Chahwala S. B., Cantley L. C., Branton D. Protein kinase C of human erythrocytes phosphorylates bands 4.1 and 4.9. Biochim Biophys Acta. 1986 Jul 11;887(2):142–149. doi: 10.1016/0167-4889(86)90048-0. [DOI] [PubMed] [Google Scholar]
  24. Ferrell J. E., Jr, Huestis W. H. Phosphoinositide metabolism and the morphology of human erythrocytes. J Cell Biol. 1984 Jun;98(6):1992–1998. doi: 10.1083/jcb.98.6.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Gardner K., Bennett V. A new erythrocyte membrane-associated protein with calmodulin binding activity. Identification and purification. J Biol Chem. 1986 Jan 25;261(3):1339–1348. [PubMed] [Google Scholar]
  26. Graham C., Avruch J., Fairbanks G. Phosphoprotein phosphatase of the human erythrocyte. Biochem Biophys Res Commun. 1976 Sep 20;72(2):701–708. doi: 10.1016/s0006-291x(76)80096-4. [DOI] [PubMed] [Google Scholar]
  27. Grazi E., Magri E. Phosphorylation of actin and removal of its inhibitory activity on pancreatic DNAase I by liver plasma membranes. FEBS Lett. 1979 Aug 15;104(2):284–286. doi: 10.1016/0014-5793(79)80833-9. [DOI] [PubMed] [Google Scholar]
  28. Harell D., Morrison M. Two-dimensional separation of erythrocyte membrane proteins. Arch Biochem Biophys. 1979 Mar;193(1):158–168. doi: 10.1016/0003-9861(79)90019-5. [DOI] [PubMed] [Google Scholar]
  29. Harris H. W., Jr, Lux S. E. Structural characterization of the phosphorylation sites of human erythrocyte spectrin. J Biol Chem. 1980 Dec 10;255(23):11512–11520. [PubMed] [Google Scholar]
  30. Hofstein R., Hershkowitz M., Gozes I., Samuel D. The characterization and phosphorylation of an actin-like protein in synaptosomal membranes. Biochim Biophys Acta. 1980 Jul 24;624(1):153–162. doi: 10.1016/0005-2795(80)90234-2. [DOI] [PubMed] [Google Scholar]
  31. Horne W. C., Leto T. L., Marchesi V. T. Differential phosphorylation of multiple sites in protein 4.1 and protein 4.9 by phorbol ester-activated and cyclic AMP-dependent protein kinases. J Biol Chem. 1985 Aug 5;260(16):9073–9076. [PubMed] [Google Scholar]
  32. Hosey M. M., Tao M. An analysis of the autophosphorylation of rabbit and human erythrocyte membranes. Biochemistry. 1976 Apr 6;15(7):1561–1568. doi: 10.1021/bi00652a029. [DOI] [PubMed] [Google Scholar]
  33. Hosey M. M., Tao M. Phosphorylation of rabbit and human erythrocyte membranes by soluble adenosine 3':5'-monophosphate-dependent and -independent protein kinases. J Biol Chem. 1977 Jan 10;252(1):102–109. [PubMed] [Google Scholar]
  34. Hosey M. M., Tao M. Selective phosphorylation of erythrocyte membrane proteins by the solubilized membrane protein kinases. Biochemistry. 1977 Oct 18;16(21):4578–4583. doi: 10.1021/bi00640a007. [DOI] [PubMed] [Google Scholar]
  35. Husain A., Howlett G. J., Sawyer W. H. The interaction of calmodulin with human and avian spectrin. Biochem Biophys Res Commun. 1984 Aug 16;122(3):1194–1200. doi: 10.1016/0006-291x(84)91218-x. [DOI] [PubMed] [Google Scholar]
  36. Johnson R. M., McGowan M. W., Morse P. D., 2nd, Dzandu J. K. Proteolytic analysis of the topological arrangement of red cell phosphoproteins. Biochemistry. 1982 Jul 20;21(15):3599–3604. doi: 10.1021/bi00258a011. [DOI] [PubMed] [Google Scholar]
  37. Kiener P. A., Carroll D., Roth B. J., Westhead E. W. Purification and characterization of a high molecular weight type 1 phosphoprotein phosphatase from the human erythrocyte. J Biol Chem. 1987 Feb 15;262(5):2016–2024. [PubMed] [Google Scholar]
  38. Lande W. M., Thiemann P. V., Mentzer W. C., Jr Missing band 7 membrane protein in two patients with high Na, low K erythrocytes. J Clin Invest. 1982 Dec;70(6):1273–1280. doi: 10.1172/JCI110726. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Lecomte M. C., Galand C., Boivin P. Protéines hydrosolubles des membranes erythrocytaires humaines. Différences de composition et de phosphorylation selon les conditions d'extraction. Nouv Rev Fr Hematol. 1982;24(6):349–358. [PubMed] [Google Scholar]
  40. Leto T. L., Marchesi V. T. A structural model of human erythrocyte protein 4.1. J Biol Chem. 1984 Apr 10;259(7):4603–4608. [PubMed] [Google Scholar]
  41. Ling E., Gardner K., Bennett V. Protein kinase C phosphorylates a recently identified membrane skeleton-associated calmodulin-binding protein in human erythrocytes. J Biol Chem. 1986 Oct 25;261(30):13875–13878. [PubMed] [Google Scholar]
  42. Ling E., Sapirstein V. Phorbol ester stimulates the phosphorylation of rabbit erythrocyte band 4.1. Biochem Biophys Res Commun. 1984 Apr 16;120(1):291–298. doi: 10.1016/0006-291x(84)91447-5. [DOI] [PubMed] [Google Scholar]
  43. Liu S. C., Derick L. H., Palek J. Visualization of the hexagonal lattice in the erythrocyte membrane skeleton. J Cell Biol. 1987 Mar;104(3):527–536. doi: 10.1083/jcb.104.3.527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Low P. S., Allen D. P., Zioncheck T. F., Chari P., Willardson B. M., Geahlen R. L., Harrison M. L. Tyrosine phosphorylation of band 3 inhibits peripheral protein binding. J Biol Chem. 1987 Apr 5;262(10):4592–4596. [PubMed] [Google Scholar]
  45. Low P. S. Structure and function of the cytoplasmic domain of band 3: center of erythrocyte membrane-peripheral protein interactions. Biochim Biophys Acta. 1986 Sep 22;864(2):145–167. doi: 10.1016/0304-4157(86)90009-2. [DOI] [PubMed] [Google Scholar]
  46. Lu P. W., Soong C. J., Tao M. Phosphorylation of ankyrin decreases its affinity for spectrin tetramer. J Biol Chem. 1985 Dec 5;260(28):14958–14964. [PubMed] [Google Scholar]
  47. Lutz H. U. A cyclic AMP-dependent phosphorylation of spectrin dimer. FEBS Lett. 1984 Apr 24;169(2):323–329. doi: 10.1016/0014-5793(84)80343-9. [DOI] [PubMed] [Google Scholar]
  48. Maretzki D., Lutz H. U. Calmodulin inhibits the phosphorylation of spectrin in vitro. Arch Biochem Biophys. 1986 Apr;246(1):469–477. doi: 10.1016/0003-9861(86)90493-5. [DOI] [PubMed] [Google Scholar]
  49. Mische S. M., Mooseker M. S., Morrow J. S. Erythrocyte adducin: a calmodulin-regulated actin-bundling protein that stimulates spectrin-actin binding. J Cell Biol. 1987 Dec;105(6 Pt 1):2837–2845. doi: 10.1083/jcb.105.6.2837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Mohamed A. H., Steck T. L. Band 3 tyrosine kinase. Association with the human erythrocyte membrane. J Biol Chem. 1986 Feb 25;261(6):2804–2809. [PubMed] [Google Scholar]
  51. Palfrey H. C., Waseem A. Protein kinase C in the human erythrocyte. Translocation to the plasma membrane and phosphorylation of bands 4.1 and 4.9 and other membrane proteins. J Biol Chem. 1985 Dec 15;260(29):16021–16029. [PubMed] [Google Scholar]
  52. Pasternack G. R., Anderson R. A., Leto T. L., Marchesi V. T. Interactions between protein 4.1 and band 3. An alternative binding site for an element of the membrane skeleton. J Biol Chem. 1985 Mar 25;260(6):3676–3683. [PubMed] [Google Scholar]
  53. Phan-Dinh-Tuy F., Henry J., Kahn A. Characterization of human red blood cell tyrosine kinase. Biochem Biophys Res Commun. 1985 Jan 16;126(1):304–312. doi: 10.1016/0006-291x(85)90606-0. [DOI] [PubMed] [Google Scholar]
  54. Pinder J. C., Bray D., Gratzer W. B. Control of interaction of spectrin and actin by phosphorylation. Nature. 1977 Dec 22;270(5639):752–754. doi: 10.1038/270752a0. [DOI] [PubMed] [Google Scholar]
  55. Plut D. A., Hosey M. M., Tao M. Evidence for the participation of cytosolic protein kinases in membrane phosphorylation in intact erythrocytes. Eur J Biochem. 1978 Jan 16;82(2):333–337. doi: 10.1111/j.1432-1033.1978.tb12027.x. [DOI] [PubMed] [Google Scholar]
  56. Pratje E., Heilmeyer L. M.G. Phosphorylation of rabbit muscle troponin and actin by a 3', 5'-c-AMP-dependent protein kinase. FEBS Lett. 1972 Oct 15;27(1):89–93. doi: 10.1016/0014-5793(72)80416-2. [DOI] [PubMed] [Google Scholar]
  57. Rybicki A. C., Heath R., Lubin B., Schwartz R. S. Human erythrocyte protein 4.1 is a phosphatidylserine binding protein. J Clin Invest. 1988 Jan;81(1):255–260. doi: 10.1172/JCI113303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Shapiro D. L., Marchesi V. T. Phosphorylation in membranes of intact human erythrocytes. J Biol Chem. 1977 Jan 25;252(2):508–517. [PubMed] [Google Scholar]
  59. Sheetz M. P., Singer S. J. On the mechanism of ATP-induced shape changes in human erythrocyte membranes. I. The role of the spectrin complex. J Cell Biol. 1977 Jun;73(3):638–646. doi: 10.1083/jcb.73.3.638. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Simkowski K. W., Tao M. Studies on a soluble human erythrocyte protein kinase. J Biol Chem. 1980 Jul 10;255(13):6456–6461. [PubMed] [Google Scholar]
  61. Sommercorn J., Mulligan J. A., Lozeman F. J., Krebs E. G. Activation of casein kinase II in response to insulin and to epidermal growth factor. Proc Natl Acad Sci U S A. 1987 Dec;84(24):8834–8838. doi: 10.1073/pnas.84.24.8834. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Soong C. J., Lu P. W., Tao M. Analysis of band 3 cytoplasmic domain phosphorylation and association with ankyrin. Arch Biochem Biophys. 1987 May 1;254(2):509–517. doi: 10.1016/0003-9861(87)90131-7. [DOI] [PubMed] [Google Scholar]
  63. Steinberg R. A. Actin nascent chains are substrates for cyclic AMP-dependent phosphorylation in vivo. Proc Natl Acad Sci U S A. 1980 Feb;77(2):910–914. doi: 10.1073/pnas.77.2.910. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Usui H., Kinohara N., Yoshikawa K., Imazu M., Imaoka T., Takeda M. Phosphoprotein phosphatases in human erythrocyte cytosol. J Biol Chem. 1983 Sep 10;258(17):10455–10463. [PubMed] [Google Scholar]
  65. Wallin R., Culp E. N., Coleman D. B., Goodman S. R. A structural model of human erythrocyte band 2.1: alignment of chemical and functional domains. Proc Natl Acad Sci U S A. 1984 Jul;81(13):4095–4099. doi: 10.1073/pnas.81.13.4095. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Walsh M. P., Hinkins S., Hartshorne D. J. Phosphorylation of smooth muscle actin by the catalytic subunit of the cAMP-dependent protein kinase. Biochem Biophys Res Commun. 1981 Sep 16;102(1):149–157. doi: 10.1016/0006-291x(81)91501-1. [DOI] [PubMed] [Google Scholar]
  67. Wang C. Y., Kong S. K., Wang J. H. Characterization of fodrin phosphorylation by spleen protein tyrosine kinase. Biochemistry. 1988 Feb 23;27(4):1254–1260. doi: 10.1021/bi00404a027. [DOI] [PubMed] [Google Scholar]
  68. Weaver D. C., Pasternack G. R., Marchesi V. T. The structural basis of ankyrin function. II. Identification of two functional domains. J Biol Chem. 1984 May 25;259(10):6170–6175. [PubMed] [Google Scholar]
  69. Wyatt J. L., Greenquist A. C., Shohet S. B. Analyses of phosphorylated tryptic peptide of spectrin from human erythrocyte membrane. Biochem Biophys Res Commun. 1977 Dec 21;79(4):1279–1285. doi: 10.1016/0006-291x(77)91144-5. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES