Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Agre P., Gardner K., Bennett V. Association between human erythrocyte calmodulin and the cytoplasmic surface of human erythrocyte membranes. J Biol Chem. 1983 May 25;258(10):6258–6265. [PubMed] [Google Scholar]
- Anderson J. M., Tyler J. M. State of spectrin phosphorylation does not affect erythrocyte shape or spectrin binding to erythrocyte membranes. J Biol Chem. 1980 Feb 25;255(4):1259–1265. [PubMed] [Google Scholar]
- Anderson J. P., Morrow J. S. The interaction of calmodulin with human erythrocyte spectrin. Inhibition of protein 4.1-stimulated actin binding. J Biol Chem. 1987 May 5;262(13):6365–6372. [PubMed] [Google Scholar]
- Anderson R. A., Lovrien R. E. Glycophorin is linked by band 4.1 protein to the human erythrocyte membrane skeleton. Nature. 1984 Feb 16;307(5952):655–658. doi: 10.1038/307655a0. [DOI] [PubMed] [Google Scholar]
- Anderson R. A., Marchesi V. T. Regulation of the association of membrane skeletal protein 4.1 with glycophorin by a polyphosphoinositide. Nature. 1985 Nov 21;318(6043):295–298. doi: 10.1038/318295a0. [DOI] [PubMed] [Google Scholar]
- Avruch J., Fairbanks G. Phosphorylation of endogenous substrates by erythrocyte membrane protein kinases. I. A monovalent cation-stimulated reaction. Biochemistry. 1974 Dec 31;13(27):5507–5514. doi: 10.1021/bi00724a009. [DOI] [PubMed] [Google Scholar]
- Birchmeier W., Singer S. J. On the mechanism of ATP-induced shape changes in human erythrocyte membranes. II. The role of ATP. J Cell Biol. 1977 Jun;73(3):647–659. doi: 10.1083/jcb.73.3.647. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boivin P., Galand C., Bertrand O. Properties of a membrane-bound tyrosine kinase phosphorylating the cytosolic fragment of the red cell membrane band 3 protein. Biochim Biophys Acta. 1986 Aug 21;860(2):243–252. doi: 10.1016/0005-2736(86)90520-1. [DOI] [PubMed] [Google Scholar]
- Boivin P., Galand C., Bertrand O. Protein band 3 phosphotyrosyl phosphatase. Purification and characterization. Int J Biochem. 1987;19(7):613–618. doi: 10.1016/0020-711x(87)90227-8. [DOI] [PubMed] [Google Scholar]
- Boivin P., Galand C. Compartimentalization of spectrin-phosphorylating enzyme in human erythrocytes. Biochem Biophys Res Commun. 1980 Mar 13;93(1):24–28. doi: 10.1016/s0006-291x(80)80240-3. [DOI] [PubMed] [Google Scholar]
- Boivin P., Galand C. Purification and characterization of an adenosine cyclic 3':5' monophosphate-dependent protein kinase from human erythrocyte membrane. Biochem Biophys Res Commun. 1978 Mar 30;81(2):473–480. doi: 10.1016/0006-291x(78)91558-9. [DOI] [PubMed] [Google Scholar]
- Boivin P., Galand C. The human red cell acid phosphatase is a phosphotyrosine protein phosphatase which dephosphorylates the membrane protein band 3. Biochem Biophys Res Commun. 1986 Jan 29;134(2):557–564. doi: 10.1016/s0006-291x(86)80456-9. [DOI] [PubMed] [Google Scholar]
- Boivin P., Garbarz M., Galand C. Casein kinase from human erythrocyte membrane, purification characterization and comparison with the cytosolic enzyme. Int J Biochem. 1980;12(3):445–449. doi: 10.1016/0020-711x(80)90126-3. [DOI] [PubMed] [Google Scholar]
- Brenner S. L., Korn E. D. Spectrin-actin interaction. Phosphorylated and dephosphorylated spectrin tetramer cross-link F-actin. J Biol Chem. 1979 Sep 10;254(17):8620–8627. [PubMed] [Google Scholar]
- Clari G., Brunati A. M., Moret V. Membrane-bound phosphotyrosyl-protein phosphatase activity in human erythrocytes. Dephosphorylation of membrane band 3 protein. Biochem Biophys Res Commun. 1987 Jan 30;142(2):587–594. doi: 10.1016/0006-291x(87)90314-7. [DOI] [PubMed] [Google Scholar]
- Cohen A. M., Liu S. C., Derick L. H., Palek J. Ultrastructural studies of the interaction of spectrin with phosphatidylserine liposomes. Blood. 1986 Oct;68(4):920–926. [PubMed] [Google Scholar]
- Cohen C. M., Foley S. F. Phorbol ester- and Ca2+-dependent phosphorylation of human red cell membrane skeletal proteins. J Biol Chem. 1986 Jun 15;261(17):7701–7709. [PubMed] [Google Scholar]
- Dekowski S. A., Rybicki A., Drickamer K. A tyrosine kinase associated with the red cell membrane phosphorylates band 3. J Biol Chem. 1983 Mar 10;258(5):2750–2753. [PubMed] [Google Scholar]
- Drickamer L. K. Fragmentation of the 95,000-dalton transmembrane polypeptide in human erythrocyte membranes. J Biol Chem. 1976 Sep 10;251(17):5115–5123. [PubMed] [Google Scholar]
- Dzandu J. K., Deh M. E., Kiener P. Phosphorylation of glycophorin A in membranes of intact human erythrocytes. Biochem Biophys Res Commun. 1985 Mar 29;127(3):878–884. doi: 10.1016/s0006-291x(85)80025-5. [DOI] [PubMed] [Google Scholar]
- Eder P. S., Soong C. J., Tao M. Phosphorylation reduces the affinity of protein 4.1 for spectrin. Biochemistry. 1986 Apr 8;25(7):1764–1770. doi: 10.1021/bi00355a047. [DOI] [PubMed] [Google Scholar]
- Fairbanks G., Avruch J. Phosphorylation of endogenous substrates by erythrocyte membrane protein kinases. II. Cyclic adenosine monophosphate-stimulated reactions. Biochemistry. 1974 Dec 31;13(27):5514–5521. doi: 10.1021/bi00724a010. [DOI] [PubMed] [Google Scholar]
- Faquin W. C., Chahwala S. B., Cantley L. C., Branton D. Protein kinase C of human erythrocytes phosphorylates bands 4.1 and 4.9. Biochim Biophys Acta. 1986 Jul 11;887(2):142–149. doi: 10.1016/0167-4889(86)90048-0. [DOI] [PubMed] [Google Scholar]
- Ferrell J. E., Jr, Huestis W. H. Phosphoinositide metabolism and the morphology of human erythrocytes. J Cell Biol. 1984 Jun;98(6):1992–1998. doi: 10.1083/jcb.98.6.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gardner K., Bennett V. A new erythrocyte membrane-associated protein with calmodulin binding activity. Identification and purification. J Biol Chem. 1986 Jan 25;261(3):1339–1348. [PubMed] [Google Scholar]
- Graham C., Avruch J., Fairbanks G. Phosphoprotein phosphatase of the human erythrocyte. Biochem Biophys Res Commun. 1976 Sep 20;72(2):701–708. doi: 10.1016/s0006-291x(76)80096-4. [DOI] [PubMed] [Google Scholar]
- Grazi E., Magri E. Phosphorylation of actin and removal of its inhibitory activity on pancreatic DNAase I by liver plasma membranes. FEBS Lett. 1979 Aug 15;104(2):284–286. doi: 10.1016/0014-5793(79)80833-9. [DOI] [PubMed] [Google Scholar]
- Harell D., Morrison M. Two-dimensional separation of erythrocyte membrane proteins. Arch Biochem Biophys. 1979 Mar;193(1):158–168. doi: 10.1016/0003-9861(79)90019-5. [DOI] [PubMed] [Google Scholar]
- Harris H. W., Jr, Lux S. E. Structural characterization of the phosphorylation sites of human erythrocyte spectrin. J Biol Chem. 1980 Dec 10;255(23):11512–11520. [PubMed] [Google Scholar]
- Hofstein R., Hershkowitz M., Gozes I., Samuel D. The characterization and phosphorylation of an actin-like protein in synaptosomal membranes. Biochim Biophys Acta. 1980 Jul 24;624(1):153–162. doi: 10.1016/0005-2795(80)90234-2. [DOI] [PubMed] [Google Scholar]
- Horne W. C., Leto T. L., Marchesi V. T. Differential phosphorylation of multiple sites in protein 4.1 and protein 4.9 by phorbol ester-activated and cyclic AMP-dependent protein kinases. J Biol Chem. 1985 Aug 5;260(16):9073–9076. [PubMed] [Google Scholar]
- Hosey M. M., Tao M. An analysis of the autophosphorylation of rabbit and human erythrocyte membranes. Biochemistry. 1976 Apr 6;15(7):1561–1568. doi: 10.1021/bi00652a029. [DOI] [PubMed] [Google Scholar]
- Hosey M. M., Tao M. Phosphorylation of rabbit and human erythrocyte membranes by soluble adenosine 3':5'-monophosphate-dependent and -independent protein kinases. J Biol Chem. 1977 Jan 10;252(1):102–109. [PubMed] [Google Scholar]
- Hosey M. M., Tao M. Selective phosphorylation of erythrocyte membrane proteins by the solubilized membrane protein kinases. Biochemistry. 1977 Oct 18;16(21):4578–4583. doi: 10.1021/bi00640a007. [DOI] [PubMed] [Google Scholar]
- Husain A., Howlett G. J., Sawyer W. H. The interaction of calmodulin with human and avian spectrin. Biochem Biophys Res Commun. 1984 Aug 16;122(3):1194–1200. doi: 10.1016/0006-291x(84)91218-x. [DOI] [PubMed] [Google Scholar]
- Johnson R. M., McGowan M. W., Morse P. D., 2nd, Dzandu J. K. Proteolytic analysis of the topological arrangement of red cell phosphoproteins. Biochemistry. 1982 Jul 20;21(15):3599–3604. doi: 10.1021/bi00258a011. [DOI] [PubMed] [Google Scholar]
- Kiener P. A., Carroll D., Roth B. J., Westhead E. W. Purification and characterization of a high molecular weight type 1 phosphoprotein phosphatase from the human erythrocyte. J Biol Chem. 1987 Feb 15;262(5):2016–2024. [PubMed] [Google Scholar]
- Lande W. M., Thiemann P. V., Mentzer W. C., Jr Missing band 7 membrane protein in two patients with high Na, low K erythrocytes. J Clin Invest. 1982 Dec;70(6):1273–1280. doi: 10.1172/JCI110726. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lecomte M. C., Galand C., Boivin P. Protéines hydrosolubles des membranes erythrocytaires humaines. Différences de composition et de phosphorylation selon les conditions d'extraction. Nouv Rev Fr Hematol. 1982;24(6):349–358. [PubMed] [Google Scholar]
- Leto T. L., Marchesi V. T. A structural model of human erythrocyte protein 4.1. J Biol Chem. 1984 Apr 10;259(7):4603–4608. [PubMed] [Google Scholar]
- Ling E., Gardner K., Bennett V. Protein kinase C phosphorylates a recently identified membrane skeleton-associated calmodulin-binding protein in human erythrocytes. J Biol Chem. 1986 Oct 25;261(30):13875–13878. [PubMed] [Google Scholar]
- Ling E., Sapirstein V. Phorbol ester stimulates the phosphorylation of rabbit erythrocyte band 4.1. Biochem Biophys Res Commun. 1984 Apr 16;120(1):291–298. doi: 10.1016/0006-291x(84)91447-5. [DOI] [PubMed] [Google Scholar]
- Liu S. C., Derick L. H., Palek J. Visualization of the hexagonal lattice in the erythrocyte membrane skeleton. J Cell Biol. 1987 Mar;104(3):527–536. doi: 10.1083/jcb.104.3.527. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Low P. S., Allen D. P., Zioncheck T. F., Chari P., Willardson B. M., Geahlen R. L., Harrison M. L. Tyrosine phosphorylation of band 3 inhibits peripheral protein binding. J Biol Chem. 1987 Apr 5;262(10):4592–4596. [PubMed] [Google Scholar]
- Low P. S. Structure and function of the cytoplasmic domain of band 3: center of erythrocyte membrane-peripheral protein interactions. Biochim Biophys Acta. 1986 Sep 22;864(2):145–167. doi: 10.1016/0304-4157(86)90009-2. [DOI] [PubMed] [Google Scholar]
- Lu P. W., Soong C. J., Tao M. Phosphorylation of ankyrin decreases its affinity for spectrin tetramer. J Biol Chem. 1985 Dec 5;260(28):14958–14964. [PubMed] [Google Scholar]
- Lutz H. U. A cyclic AMP-dependent phosphorylation of spectrin dimer. FEBS Lett. 1984 Apr 24;169(2):323–329. doi: 10.1016/0014-5793(84)80343-9. [DOI] [PubMed] [Google Scholar]
- Maretzki D., Lutz H. U. Calmodulin inhibits the phosphorylation of spectrin in vitro. Arch Biochem Biophys. 1986 Apr;246(1):469–477. doi: 10.1016/0003-9861(86)90493-5. [DOI] [PubMed] [Google Scholar]
- Mische S. M., Mooseker M. S., Morrow J. S. Erythrocyte adducin: a calmodulin-regulated actin-bundling protein that stimulates spectrin-actin binding. J Cell Biol. 1987 Dec;105(6 Pt 1):2837–2845. doi: 10.1083/jcb.105.6.2837. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mohamed A. H., Steck T. L. Band 3 tyrosine kinase. Association with the human erythrocyte membrane. J Biol Chem. 1986 Feb 25;261(6):2804–2809. [PubMed] [Google Scholar]
- Palfrey H. C., Waseem A. Protein kinase C in the human erythrocyte. Translocation to the plasma membrane and phosphorylation of bands 4.1 and 4.9 and other membrane proteins. J Biol Chem. 1985 Dec 15;260(29):16021–16029. [PubMed] [Google Scholar]
- Pasternack G. R., Anderson R. A., Leto T. L., Marchesi V. T. Interactions between protein 4.1 and band 3. An alternative binding site for an element of the membrane skeleton. J Biol Chem. 1985 Mar 25;260(6):3676–3683. [PubMed] [Google Scholar]
- Phan-Dinh-Tuy F., Henry J., Kahn A. Characterization of human red blood cell tyrosine kinase. Biochem Biophys Res Commun. 1985 Jan 16;126(1):304–312. doi: 10.1016/0006-291x(85)90606-0. [DOI] [PubMed] [Google Scholar]
- Pinder J. C., Bray D., Gratzer W. B. Control of interaction of spectrin and actin by phosphorylation. Nature. 1977 Dec 22;270(5639):752–754. doi: 10.1038/270752a0. [DOI] [PubMed] [Google Scholar]
- Plut D. A., Hosey M. M., Tao M. Evidence for the participation of cytosolic protein kinases in membrane phosphorylation in intact erythrocytes. Eur J Biochem. 1978 Jan 16;82(2):333–337. doi: 10.1111/j.1432-1033.1978.tb12027.x. [DOI] [PubMed] [Google Scholar]
- Pratje E., Heilmeyer L. M.G. Phosphorylation of rabbit muscle troponin and actin by a 3', 5'-c-AMP-dependent protein kinase. FEBS Lett. 1972 Oct 15;27(1):89–93. doi: 10.1016/0014-5793(72)80416-2. [DOI] [PubMed] [Google Scholar]
- Rybicki A. C., Heath R., Lubin B., Schwartz R. S. Human erythrocyte protein 4.1 is a phosphatidylserine binding protein. J Clin Invest. 1988 Jan;81(1):255–260. doi: 10.1172/JCI113303. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shapiro D. L., Marchesi V. T. Phosphorylation in membranes of intact human erythrocytes. J Biol Chem. 1977 Jan 25;252(2):508–517. [PubMed] [Google Scholar]
- Sheetz M. P., Singer S. J. On the mechanism of ATP-induced shape changes in human erythrocyte membranes. I. The role of the spectrin complex. J Cell Biol. 1977 Jun;73(3):638–646. doi: 10.1083/jcb.73.3.638. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Simkowski K. W., Tao M. Studies on a soluble human erythrocyte protein kinase. J Biol Chem. 1980 Jul 10;255(13):6456–6461. [PubMed] [Google Scholar]
- Sommercorn J., Mulligan J. A., Lozeman F. J., Krebs E. G. Activation of casein kinase II in response to insulin and to epidermal growth factor. Proc Natl Acad Sci U S A. 1987 Dec;84(24):8834–8838. doi: 10.1073/pnas.84.24.8834. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Soong C. J., Lu P. W., Tao M. Analysis of band 3 cytoplasmic domain phosphorylation and association with ankyrin. Arch Biochem Biophys. 1987 May 1;254(2):509–517. doi: 10.1016/0003-9861(87)90131-7. [DOI] [PubMed] [Google Scholar]
- Steinberg R. A. Actin nascent chains are substrates for cyclic AMP-dependent phosphorylation in vivo. Proc Natl Acad Sci U S A. 1980 Feb;77(2):910–914. doi: 10.1073/pnas.77.2.910. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Usui H., Kinohara N., Yoshikawa K., Imazu M., Imaoka T., Takeda M. Phosphoprotein phosphatases in human erythrocyte cytosol. J Biol Chem. 1983 Sep 10;258(17):10455–10463. [PubMed] [Google Scholar]
- Wallin R., Culp E. N., Coleman D. B., Goodman S. R. A structural model of human erythrocyte band 2.1: alignment of chemical and functional domains. Proc Natl Acad Sci U S A. 1984 Jul;81(13):4095–4099. doi: 10.1073/pnas.81.13.4095. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Walsh M. P., Hinkins S., Hartshorne D. J. Phosphorylation of smooth muscle actin by the catalytic subunit of the cAMP-dependent protein kinase. Biochem Biophys Res Commun. 1981 Sep 16;102(1):149–157. doi: 10.1016/0006-291x(81)91501-1. [DOI] [PubMed] [Google Scholar]
- Wang C. Y., Kong S. K., Wang J. H. Characterization of fodrin phosphorylation by spleen protein tyrosine kinase. Biochemistry. 1988 Feb 23;27(4):1254–1260. doi: 10.1021/bi00404a027. [DOI] [PubMed] [Google Scholar]
- Weaver D. C., Pasternack G. R., Marchesi V. T. The structural basis of ankyrin function. II. Identification of two functional domains. J Biol Chem. 1984 May 25;259(10):6170–6175. [PubMed] [Google Scholar]
- Wyatt J. L., Greenquist A. C., Shohet S. B. Analyses of phosphorylated tryptic peptide of spectrin from human erythrocyte membrane. Biochem Biophys Res Commun. 1977 Dec 21;79(4):1279–1285. doi: 10.1016/0006-291x(77)91144-5. [DOI] [PubMed] [Google Scholar]