Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1994 May 15;300(Pt 1):111–115. doi: 10.1042/bj3000111

Site-directed mutagenesis of rat muscle 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase: role of Asp-130 in the 2-kinase domain.

M H Rider 1, K M Crepin 1, M De Cloedt 1, L Bertrand 1, L Hue 1
PMCID: PMC1138131  PMID: 8198521

Abstract

Asp-130 of the recombinant skeletal-muscle 6-phosphofructo-2-kinase (PFK-2)/fructose-2,6-bisphosphatase was mutated into Ala in order to study its role in catalysis and/or substrate binding. The D130A mutant displayed a 30- to 140-fold decreased 2-kinase Vmax, depending on the pH, and a 30- and 60-fold increase in Km for MgATP and Fru-6-P respectively at pH 8.5 compared with the wild-type. Mutagenesis of Asp-130 to Ala had no effect on the 2-phosphatase activity, and fluorescence measurements indicated that the changes in kinetic properties of PFK-2 in the D130A mutant were not due to instability. The role of Asp-130 in the 2-kinase reaction is discussed and compared with that of Asp-103 of 6-phosphofructo-1-kinase from Escherichia coli, which binds Mg2+.

Full text

PDF
115

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bazan J. F., Fletterick R. J., Pilkis S. J. Evolution of a bifunctional enzyme: 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase. Proc Natl Acad Sci U S A. 1989 Dec;86(24):9642–9646. doi: 10.1073/pnas.86.24.9642. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Berger S. A., Evans P. R. Active-site mutants altering the cooperativity of E. coli phosphofructokinase. Nature. 1990 Feb 8;343(6258):575–576. doi: 10.1038/343575a0. [DOI] [PubMed] [Google Scholar]
  3. Berger S. A., Evans P. R. Site-directed mutagenesis identifies catalytic residues in the active site of Escherichia coli phosphofructokinase. Biochemistry. 1992 Sep 29;31(38):9237–9242. doi: 10.1021/bi00153a017. [DOI] [PubMed] [Google Scholar]
  4. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  5. Crepin K. M., Darville M. I., Michel A., Hue L., Rousseau G. G. Cloning and expression in Escherichia coli of a rat hepatoma cell cDNA coding for 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase. Biochem J. 1989 Nov 15;264(1):151–160. doi: 10.1042/bj2640151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Crepin K. M., De Cloedt M., Vertommen D., Foret D., Michel A., Rider M. H., Rousseau G. G., Hue L. Molecular forms of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase expressed in rat skeletal muscle. J Biol Chem. 1992 Oct 25;267(30):21698–21704. [PubMed] [Google Scholar]
  7. Crepin K. M., Vertommen D., Dom G., Hue L., Rider M. H. Rat muscle 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase. Study of the kinase domain by site-directed mutagenesis. J Biol Chem. 1993 Jul 15;268(20):15277–15284. [PubMed] [Google Scholar]
  8. Hellinga H. W., Evans P. R. Mutations in the active site of Escherichia coli phosphofructokinase. Nature. 1987 Jun 4;327(6121):437–439. doi: 10.1038/327437a0. [DOI] [PubMed] [Google Scholar]
  9. Kitajima S., Sakakibara R., Uyeda K. Kinetic studies of fructose 6-phosphate,2-kinase and fructose 2,6-bisphosphatase. J Biol Chem. 1984 Jun 10;259(11):6896–6903. [PubMed] [Google Scholar]
  10. Kountz P. D., Freeman S., Cook A. G., el-Maghrabi M. R., Knowles J. R., Pilkis S. J. The stereochemical course of phospho group transfer catalyzed by rat liver 6-phosphofructo-2-kinase. J Biol Chem. 1988 Nov 5;263(31):16069–16072. [PubMed] [Google Scholar]
  11. Kretschmer M., Hofmann E. Inhibition of rat liver phosphofructokinase-2 by phosphoenolpyruvate and ADP. Biochem Biophys Res Commun. 1984 Nov 14;124(3):793–796. doi: 10.1016/0006-291x(84)91027-1. [DOI] [PubMed] [Google Scholar]
  12. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  13. Laine R., Deville-Bonne D., Auzat I., Garel J. R. Interaction between the carboxyl groups of Asp127 and Asp129 in the active site of Escherichia coli phosphofructokinase. Eur J Biochem. 1992 Aug 1;207(3):1109–1114. doi: 10.1111/j.1432-1033.1992.tb17148.x. [DOI] [PubMed] [Google Scholar]
  14. Li L., Lin K., Correia J. J., Pilkis S. J. Lysine 356 is a critical residue for binding the C-6 phospho group of fructose 2,6-bisphosphate to the fructose-2,6-bisphosphatase domain of rat liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase. J Biol Chem. 1992 Aug 15;267(23):16669–16675. [PubMed] [Google Scholar]
  15. Li L., Lin K., Kurland I. J., Correia J. J., Pilkis S. J. Site-directed mutagenesis in rat liver 6-phosphofructo-2-kinase. Mutation at the fructose 6-phosphate binding site affects phosphate activation. J Biol Chem. 1992 Mar 5;267(7):4386–4393. [PubMed] [Google Scholar]
  16. Lin K., Li L., Correia J. J., Pilkis S. J. Arg-257 and Arg-307 of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase bind the C-2 phospho group of fructose-2,6-bisphosphate in the fructose-2,6-bisphosphatase domain. J Biol Chem. 1992 Sep 25;267(27):19163–19171. [PubMed] [Google Scholar]
  17. Lin K., Li L., Correia J. J., Pilkis S. J. Glu327 is part of a catalytic triad in rat liver fructose-2,6-bisphosphatase. J Biol Chem. 1992 Apr 5;267(10):6556–6562. [PubMed] [Google Scholar]
  18. Lively M. O., el-Maghrabi M. R., Pilkis J., D'Angelo G., Colosia A. D., Ciavola J. A., Fraser B. A., Pilkis S. J. Complete amino acid sequence of rat liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase. J Biol Chem. 1988 Jan 15;263(2):839–849. [PubMed] [Google Scholar]
  19. Pilkis S. J., Regen D. M., Stewart H. B., Pilkis J., Pate T. M., El-Maghrabi M. R. Evidence for two catalytic sites on 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatase. Dynamics of substrate exchange and phosphoryl enzyme formation. J Biol Chem. 1984 Jan 25;259(2):949–958. [PubMed] [Google Scholar]
  20. Pyko M., Rider M. H., Hue L., Wegener G. 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase from frog skeletal muscle: purification, kinetics and immunological properties. J Comp Physiol B. 1993;163(2):89–98. doi: 10.1007/BF00263592. [DOI] [PubMed] [Google Scholar]
  21. Rider M. H., Hue L. Inactivation of liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase by phenylglyoxal. Evidence for essential arginine residues. Eur J Biochem. 1992 Aug 1;207(3):967–972. doi: 10.1111/j.1432-1033.1992.tb17131.x. [DOI] [PubMed] [Google Scholar]
  22. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Sayers J. R., Schmidt W., Eckstein F. 5'-3' exonucleases in phosphorothioate-based oligonucleotide-directed mutagenesis. Nucleic Acids Res. 1988 Feb 11;16(3):791–802. doi: 10.1093/nar/16.3.791. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Schulz G. E., Elzinga M., Marx F., Schrimer R. H. Three dimensional structure of adenyl kinase. Nature. 1974 Jul 12;250(462):120–123. doi: 10.1038/250120a0. [DOI] [PubMed] [Google Scholar]
  25. Studier F. W., Moffatt B. A. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol. 1986 May 5;189(1):113–130. doi: 10.1016/0022-2836(86)90385-2. [DOI] [PubMed] [Google Scholar]
  26. Tauler A., Lin K., Pilkis S. J. Hepatic 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase. Use of site-directed mutagenesis to evaluate the roles of His-258 and His-392 in catalysis. J Biol Chem. 1990 Sep 15;265(26):15617–15622. [PubMed] [Google Scholar]
  27. Tsai M. D., Yan H. G. Mechanism of adenylate kinase: site-directed mutagenesis versus X-ray and NMR. Biochemistry. 1991 Jul 16;30(28):6806–6818. doi: 10.1021/bi00242a002. [DOI] [PubMed] [Google Scholar]
  28. Walker J. E., Saraste M., Runswick M. J., Gay N. J. Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J. 1982;1(8):945–951. doi: 10.1002/j.1460-2075.1982.tb01276.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES