Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1986 Jun 1;236(2):447–451. doi: 10.1042/bj2360447

Identification of lysine at the active site of human 5-aminolaevulinate dehydratase.

P N Gibbs, P M Jordan
PMCID: PMC1146860  PMID: 3092810

Abstract

Reduction of human 5-aminolaevulinate dehydratase with NaBH4 in the presence of 14C-labelled substrate led to complete loss of catalytic activity and to incorporation of label into the enzyme protein. By comparison with authentic lysyl-aminolaevulinic acid, prepared chemically, the modified active-site amino acid obtained by acid hydrolysis was shown to be lysine. Sequencing of a CNBr-cleavage peptide isolated from the inactivated 14C-labelled enzyme revealed that the lysine was present within the sequence M-V-K-P-G-M.

Full text

PDF
448

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson P. M., Desnick R. J. Purification and properties of delta-aminolevulinate dehydrase from human erythrocytes. J Biol Chem. 1979 Aug 10;254(15):6924–6930. [PubMed] [Google Scholar]
  2. Bloxham D. P., Parmelee D. C., Kumar S., Walsh K. A., Titani K. Complete amino acid sequence of porcine heart citrate synthase. Biochemistry. 1982 Apr 27;21(9):2028–2036. doi: 10.1021/bi00538a009. [DOI] [PubMed] [Google Scholar]
  3. Gibbs P. N., Chaudhry A. G., Jordan P. M. Purification and properties of 5-aminolaevulinate dehydratase from human erythrocytes. Biochem J. 1985 Aug 15;230(1):25–34. doi: 10.1042/bj2300025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Gibbs P. N., Gore M. G., Jordan P. M. Investigation of the effect of metal ions on the reactivity of thiol groups in human 5-aminolaevulinate dehydratase. Biochem J. 1985 Feb 1;225(3):573–580. doi: 10.1042/bj2250573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Jordan P. M., Gibbs P. N. Mechanism of action of 5-aminolaevulinate dehydratase from human erythrocytes. Biochem J. 1985 May 1;227(3):1015–1020. doi: 10.1042/bj2271015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Jordan P. M., Seehra J. S. 13C NMR as a probe for the study of enzyme-catalysed reactions: mechanism of action of 5-aminolevulinic acid dehydratase. FEBS Lett. 1980 Jun 2;114(2):283–286. doi: 10.1016/0014-5793(80)81134-3. [DOI] [PubMed] [Google Scholar]
  7. Liedgens W., Lütz C., Schneider H. A. Molecular properties of 5-aminolevulinic acid dehydratase from Spinacia oleracea. Eur J Biochem. 1983 Sep 1;135(1):75–79. doi: 10.1111/j.1432-1033.1983.tb07619.x. [DOI] [PubMed] [Google Scholar]
  8. Nandi D. L. Lysine as the substrate binding site of porphobilinogen synthase of Rhodopseudomonas spheroides. Z Naturforsch C. 1978 Sep-Oct;33(9-10):799–802. doi: 10.1515/znc-1978-9-1036. [DOI] [PubMed] [Google Scholar]
  9. Nandi D. L., Shemin D. Delta-aminolevulinic acid dehydratase of Rhodopseudomonas spheroides. 3. Mechanism of porphobilinogen synthesis. J Biol Chem. 1968 Mar 25;243(6):1236–1242. [PubMed] [Google Scholar]
  10. Shemin D. 5-Aminolaevulinic acid dehydratase: structure, function, and mechanism. Philos Trans R Soc Lond B Biol Sci. 1976 Feb 5;273(924):109–115. doi: 10.1098/rstb.1976.0004. [DOI] [PubMed] [Google Scholar]
  11. Tsukamoto I., Yoshinaga T., Sano S. Evidence for histidine as another functional group of delta-aminolevulinic acid dehydratase from beef liver. Biochem Biophys Res Commun. 1975 Nov 3;67(1):294–300. doi: 10.1016/0006-291x(75)90315-0. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES