Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1986 Jul 1;237(1):217–227. doi: 10.1042/bj2370217

A kinetic model for the Ca2+ + Mg2+-activated ATPase of sarcoplasmic reticulum.

G W Gould, J M East, R J Froud, J M McWhirter, H I Stefanova, A G Lee
PMCID: PMC1146968  PMID: 2948490

Abstract

The Ca2+ + Mg2+-activated ATPase of sarcoplasmic reticulum exhibits complex kinetics of activation with respect to ATP. ATPase activity is pH-dependent, with similar pH-activity profiles at high and low concentrations of ATP. Low concentrations of Ca2+ in the micromolar range activate the ATPase, whereas activity is inhibited by Ca2+ at millimolar concentrations. The pH-dependence of this Ca2+ inhibition and the effect of the detergent C12E8 (dodecyl octaethylene glycol monoether) on Ca2+ inhibition are similar to those observed on activation by low concentrations of Ca2+. On the basis of these and other studies we present a kinetic model for the ATPase. The ATPase is postulated to exist in one of two conformations: a conformation (E1) of high affinity for Ca2+ and MgATP and a conformation (E2) of low affinity for Ca2+ and MgATP. Ca2+ binding to E2 and to the phosphorylated form E2P are equal. Proton binding at the Ca2+-binding sites in the E1 and E2 conformations explains the pH-dependence of Ca2+ effects. Binding of MgATP to the phosphorylated intermediate E1'PCa2 and to E2 modulate the rates of the transport step E1'PCa-E2'PCa2 and the return of the empty Ca2+ sites to the outside surface of the sarcoplasmic reticulum, as well as the rate of dephosphorylation of E2P. Only a single binding site for MgATP is postulated.

Full text

PDF
218

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersen J. P., Lassen K., Møller J. V. Changes in Ca2+ affinity related to conformational transitions in the phosphorylated state of soluble monomeric Ca2+-ATPase from sarcoplasmic reticulum. J Biol Chem. 1985 Jan 10;260(1):371–380. [PubMed] [Google Scholar]
  2. Andersen J. P., Møller J. V., Jørgensen P. L. The functional unit of sarcoplasmic reticulum Ca2+-ATPase. Active site titration and fluorescence measurements. J Biol Chem. 1982 Jul 25;257(14):8300–8307. [PubMed] [Google Scholar]
  3. Andersen J. P., Møller J. V. The role of Mg2+ and Ca2+ in the simultaneous binding of vanadate and ATP at the phosphorylation site of sarcoplasmic reticulum Ca2+-ATPase. Biochim Biophys Acta. 1985 Apr 26;815(1):9–15. doi: 10.1016/0005-2736(85)90467-5. [DOI] [PubMed] [Google Scholar]
  4. Anderson K. W., Murphy A. J. Alterations in the structure of the ribose moiety of ATP reduce its effectiveness as a substrate for the sarcoplasmic reticulum ATPase. J Biol Chem. 1983 Dec 10;258(23):14276–14278. [PubMed] [Google Scholar]
  5. Bishop J. E., Johnson J. D., Berman M. C. Transient kinetic analysis of turnover-dependent fluorescence of 2',3'-O-(2,4,6-trinitrophenyl)-ATP bound to Ca2+-ATPase of sarcoplasmic reticulum. J Biol Chem. 1984 Dec 25;259(24):15163–15171. [PubMed] [Google Scholar]
  6. Carvalho-Alves P. C., Oliveira C. R., Verjovski-Almeida S. Stoichiometric photolabeling of two distinct low and high affinity nucleotide sites in sarcoplasmic reticulum ATPase. J Biol Chem. 1985 Apr 10;260(7):4282–4287. [PubMed] [Google Scholar]
  7. Cornish-Bowden A. An automatic method for deriving steady-state rate equations. Biochem J. 1977 Jul 1;165(1):55–59. doi: 10.1042/bj1650055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dupont Y., Chapron Y., Pougeois R. Titration of the nucleotide binding sites of sarcoplasmic reticulum Ca2+ -ATPase with 2',3'-O-(2,4,6-trinitrophenyl) adenosine 5'-triphosphate and 5'-diphosphate. Biochem Biophys Res Commun. 1982 Jun 30;106(4):1272–1279. doi: 10.1016/0006-291x(82)91250-5. [DOI] [PubMed] [Google Scholar]
  9. Dupont Y. Kinetics and regulation of sarcoplasmic reticulum ATPase. Eur J Biochem. 1977 Jan 3;72(1):185–190. doi: 10.1111/j.1432-1033.1977.tb11238.x. [DOI] [PubMed] [Google Scholar]
  10. Fabiato A., Fabiato F. Calculator programs for computing the composition of the solutions containing multiple metals and ligands used for experiments in skinned muscle cells. J Physiol (Paris) 1979;75(5):463–505. [PubMed] [Google Scholar]
  11. Fernandez-Belda F., Kurzmack M., Inesi G. A comparative study of calcium transients by isotopic tracer, metallochromic indicator, and intrinsic fluorescence in sarcoplasmic reticulum ATPase. J Biol Chem. 1984 Aug 10;259(15):9687–9698. [PubMed] [Google Scholar]
  12. Froehlich J. P., Heller P. F. Transient-state kinetics of the ADP-insensitive phosphoenzyme in sarcoplasmic reticulum: implications for transient-state calcium translocation. Biochemistry. 1985 Jan 1;24(1):126–136. doi: 10.1021/bi00322a018. [DOI] [PubMed] [Google Scholar]
  13. Froud R. J., Lee A. G. A model for the phosphorylation of the Ca2+ + Mg2+-activated ATPase by phosphate. Biochem J. 1986 Jul 1;237(1):207–215. doi: 10.1042/bj2370207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Froud R. J., Lee A. G. Conformational transitions in the Ca2+ + Mg2+-activated ATPase and the binding of Ca2+ ions. Biochem J. 1986 Jul 1;237(1):197–206. doi: 10.1042/bj2370197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Garrahan P. J., Rega A. F., Alonso G. L. The interaction of magnesium ions with the calcium pump of sarcoplasmic reticulum. Biochim Biophys Acta. 1976 Sep 21;448(1):121–132. doi: 10.1016/0005-2736(76)90081-x. [DOI] [PubMed] [Google Scholar]
  16. Gruys K. J., Urbauer J. L., Schuster S. M. Metal-nucleotide structural characteristics during catalysis by beef heart mitochondrial F1. J Biol Chem. 1985 Jun 10;260(11):6533–6540. [PubMed] [Google Scholar]
  17. Guillain F., Champeil P., Boyer P. D. Sarcoplasmic reticulum adenosinetriphosphatase phosphorylation from inorganic phosphate. Theoretical and experimental reinvestigation. Biochemistry. 1984 Sep 25;23(20):4754–4761. doi: 10.1021/bi00315a034. [DOI] [PubMed] [Google Scholar]
  18. Highsmith S. Evidence that the ATP binding site of sarcoplasmic reticulum CaATPase has a Mg(2+) ion binding sub-site. Biochem Biophys Res Commun. 1984 Oct 15;124(1):183–189. doi: 10.1016/0006-291x(84)90934-3. [DOI] [PubMed] [Google Scholar]
  19. Inesi G., Hill T. L. Calcium and proton dependence of sarcoplasmic reticulum ATPase. Biophys J. 1983 Nov;44(2):271–280. doi: 10.1016/S0006-3495(83)84299-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kosk-Kosicka D., Kurzmack M., Inesi G. Kinetic characterization of detergent-solubilized sarcoplasmic reticulum adenosinetriphosphatase. Biochemistry. 1983 May 10;22(10):2559–2567. doi: 10.1021/bi00279a037. [DOI] [PubMed] [Google Scholar]
  21. Lee A. G., East J. M., Jones O. T., McWhirter J., Rooney E. K., Simmonds A. C. Binding of dansyl propranolol to the (Ca2+ + Mg2+)-ATPase. Biochim Biophys Acta. 1983 Jul 27;732(2):441–454. doi: 10.1016/0005-2736(83)90061-5. [DOI] [PubMed] [Google Scholar]
  22. Lemasters J. J. The ATP-to-oxygen stoichiometries of oxidative phosphorylation by rat liver mitochondria. An analysis of ADP-induced oxygen jumps by linear nonequilibrium thermodynamics. J Biol Chem. 1984 Nov 10;259(21):13123–13130. [PubMed] [Google Scholar]
  23. McIntosh D. B., Boyer P. D. Adenosine 5'-triphosphate modulation of catalytic intermediates of calcium ion activated adenosinetriphosphatase of sarcoplasmic reticulum subsequent to enzyme phosphorylation. Biochemistry. 1983 Jun 7;22(12):2867–2875. doi: 10.1021/bi00281a015. [DOI] [PubMed] [Google Scholar]
  24. Meissner G. ATP and Ca2+ binding by the Ca2+ pump protein of sarcoplasmic reticulum. Biochim Biophys Acta. 1973 Apr 16;298(4):906–926. doi: 10.1016/0005-2736(73)90395-7. [DOI] [PubMed] [Google Scholar]
  25. Nakamoto R. K., Inesi G. Studies of the interactions of 2',3'-O-(2,4,6-trinitrocyclohexyldienylidine)adenosine nucleotides with the sarcoplasmic reticulum (Ca2+ + Mg2+)-ATPase active site. J Biol Chem. 1984 Mar 10;259(5):2961–2970. [PubMed] [Google Scholar]
  26. Nakamura Y., Tonomura Y. The binding of ATP to the catalytic and the regulatory site of Ca2+, Mg2+-dependent ATPase of the sarcoplasmic reticulum. J Bioenerg Biomembr. 1982 Dec;14(5-6):307–318. doi: 10.1007/BF00743060. [DOI] [PubMed] [Google Scholar]
  27. Nakamura Y. Two alternate kinetic routes for the decomposition of the phosphorylated intermediate of sarcoplasmic reticulum Ca2+-ATPase. J Biol Chem. 1984 Jul 10;259(13):8183–8189. [PubMed] [Google Scholar]
  28. Neet K. E., Green N. M. Kinetics of the cooperativity of the Ca2+-transporting adenosine triphosphatase of sarcoplasmic reticulum and the mechanism of the ATP interaction. Arch Biochem Biophys. 1977 Jan 30;178(2):588–597. doi: 10.1016/0003-9861(77)90230-2. [DOI] [PubMed] [Google Scholar]
  29. Pickart C. M., Jencks W. P. Energetics of the calcium-transporting ATPase. J Biol Chem. 1984 Feb 10;259(3):1629–1643. [PubMed] [Google Scholar]
  30. Pickart C. M., Jencks W. P. Slow dissociation of ATP from the calcium ATPase. J Biol Chem. 1982 May 25;257(10):5319–5322. [PubMed] [Google Scholar]
  31. Ribeiro J. M., Vianna A. L. Allosteric modification by K+ of the (Ca2+ + Mg2+)-dependent ATPase of sarcoplasmic reticulum. Interaction with Mg2+. J Biol Chem. 1978 May 10;253(9):3153–3157. [PubMed] [Google Scholar]
  32. Rooney E. K., Lee A. G. Binding of hydrophobic drugs to lipid bilayers and to the (Ca2+ + Mg2+)-ATPase. Biochim Biophys Acta. 1983 Jul 27;732(2):428–440. doi: 10.1016/0005-2736(83)90060-3. [DOI] [PubMed] [Google Scholar]
  33. Scofano H. M., Vieyra A., de Meis L. Substrate regulation of the sarcoplasmic reticulum ATPase. Transient kinetic studies. J Biol Chem. 1979 Oct 25;254(20):10227–10231. [PubMed] [Google Scholar]
  34. Shigekawa M., Kanazawa T. Phosphoenzyme formation from ATP in the ATPase of sarcoplasmic reticulum. Effect of KCl or ATP and slow dissociation of ATP from precursor enzyme-ATP complex. J Biol Chem. 1982 Jul 10;257(13):7657–7665. [PubMed] [Google Scholar]
  35. Shigekawa M., Wakabayashi S., Nakamura H. Effect of divalent cation bound to the ATPase of sarcoplasmic reticulum. Activation of phosphoenzyme hydrolysis by Mg2+. J Biol Chem. 1983 Dec 10;258(23):14157–14161. [PubMed] [Google Scholar]
  36. Silva J. L., Verjovski-Almeida S. Self-association and modification of calcium binding in solubilized sarcoplasmic reticulum adenosinetriphosphatase. Biochemistry. 1983 Feb 1;22(3):707–716. doi: 10.1021/bi00272a028. [DOI] [PubMed] [Google Scholar]
  37. Stahl N., Jencks W. P. Adenosine 5'-triphosphate at the active site accelerates binding of calcium to calcium adenosinetriphosphatase. Biochemistry. 1984 Nov 6;23(23):5389–5392. doi: 10.1021/bi00318a002. [DOI] [PubMed] [Google Scholar]
  38. Takisawa H., Tonomura Y. Factors affecting the transient phase of the Ca2+, Mg2+-dependent ATPase reaction of sarcoplasmic reticulum from skeletal muscle. J Biochem. 1978 May;83(5):1275–1284. doi: 10.1093/oxfordjournals.jbchem.a132034. [DOI] [PubMed] [Google Scholar]
  39. Taylor J. S., Hattan D. Biphasic kinetics of ATP hydrolysis by calcium-dependent ATPase of the sarcoplasmic reticulum of skeletal muscle. Evidence for a nucleoside triphosphate effector site. J Biol Chem. 1979 Jun 10;254(11):4402–4407. [PubMed] [Google Scholar]
  40. Veech R. L., Lawson J. W., Cornell N. W., Krebs H. A. Cytosolic phosphorylation potential. J Biol Chem. 1979 Jul 25;254(14):6538–6547. [PubMed] [Google Scholar]
  41. Verjovski-Almeida S., Kurzmack M., Inesi G. Partial reactions in the catalytic and transport cycle of sarcoplasmic reticulum ATPase. Biochemistry. 1978 Nov 14;17(23):5006–5013. doi: 10.1021/bi00616a023. [DOI] [PubMed] [Google Scholar]
  42. Wakabayashi S., Shigekawa M. Role of divalent cation bound to phosphoenzyme intermediate of sarcoplasmic reticulum ATPase. J Biol Chem. 1984 Apr 10;259(7):4427–4436. [PubMed] [Google Scholar]
  43. Watanabe T., Inesi G. The use of 2',3'-O-(2,4,6-trinitrophenyl) adenosine 5'-triphosphate for studies of nucleotide interaction with sarcoplasmic reticulum vesicles. J Biol Chem. 1982 Oct 10;257(19):11510–11516. [PubMed] [Google Scholar]
  44. Watanabe T., Lewis D., Nakamoto R., Kurzmack M., Fronticelli C., Inesi G. Modulation of calcium binding in sarcoplasmic reticulum adenosinetriphosphatase. Biochemistry. 1981 Nov 10;20(23):6617–6625. doi: 10.1021/bi00526a015. [DOI] [PubMed] [Google Scholar]
  45. de Meis L., Fialho de Mello M. C. Substrate regulation of membrane phosphorylation and of Ca 2+ transport in the sarcoplasmic reticulum. J Biol Chem. 1973 May 25;248(10):3691–3701. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES