Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1986 Aug 1;237(3):859–864. doi: 10.1042/bj2370859

The activation of protein degradation in muscle by Ca2+ or muscle injury does not involve a lysosomal mechanism.

K Furuno, A L Goldberg
PMCID: PMC1147067  PMID: 3099758

Abstract

By use of different inhibitors, we distinguished three proteolytic processes in rat skeletal muscle. When soleus muscles maintained under tension were exposed to the calcium ionophore A23187 or were incubated under no tension in the presence of Ca2+, net protein breakdown increased by 50-80%. Although leupeptin and E-64 inhibit this acceleration of protein breakdown almost completely, other agents that prevent lysosomal function, such as methylamine or leucine methyl ester, did not inhibit this effect. A similar increase in net proteolysis occurred in muscle fibres injured by cutting, and this response was also inhibited by leupeptin, but not by methylamine. In contrast, all these inhibitors markedly decreased the 2-fold increase in protein breakdown induced by incubating muscles without insulin and leucine, isoleucine and valine. In addition, the low rate of proteolysis seen in muscles under passive tension in complete medium was not affected by any of these inhibitors. Thus the basal degradative process in muscle does not involve lysosomes or thiol proteinases, and muscle can enhance protein breakdown by two mechanisms: lack of insulin and nutrients enhances a lysosomal process in muscle, as in other cells, whereas Ca2+ and muscle injury activate a distinct pathway involving cytosolic thiol proteinase(s).

Full text

PDF
860

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baracos V., Rodemann H. P., Dinarello C. A., Goldberg A. L. Stimulation of muscle protein degradation and prostaglandin E2 release by leukocytic pyrogen (interleukin-1). A mechanism for the increased degradation of muscle proteins during fever. N Engl J Med. 1983 Mar 10;308(10):553–558. doi: 10.1056/NEJM198303103081002. [DOI] [PubMed] [Google Scholar]
  2. Dahlmann B., Kuehn L., Rutschmann M., Reinauer H. Purification and characterization of a multicatalytic high-molecular-mass proteinase from rat skeletal muscle. Biochem J. 1985 May 15;228(1):161–170. doi: 10.1042/bj2280161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ebashi S. Excitation-contraction coupling. Annu Rev Physiol. 1976;38:293–313. doi: 10.1146/annurev.ph.38.030176.001453. [DOI] [PubMed] [Google Scholar]
  4. Emery A. E., Burt D. Intracellular calcium and pathogenesis and antenatal diagnosis of Duchenne muscular dystrophy. Br Med J. 1980 Feb 9;280(6211):355–357. doi: 10.1136/bmj.280.6211.355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Etlinger J. D., Speiser S., Wajnberg E., Glucksman M. J. ATP-dependent proteolysis in erythroid and muscle cells. Acta Biol Med Ger. 1981;40(10-11):1285–1291. [PubMed] [Google Scholar]
  6. Fulks R. M., Li J. B., Goldberg A. L. Effects of insulin, glucose, and amino acids on protein turnover in rat diaphragm. J Biol Chem. 1975 Jan 10;250(1):290–298. [PubMed] [Google Scholar]
  7. Goldspink D. F., Goldspink G. Age-related changes in protein turnover and ribonucleic acid of the diaphragm muscle of normal and dystrophic hamsters. Biochem J. 1977 Jan 15;162(1):191–194. doi: 10.1042/bj1620191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Goldspink D. F. The effects of denervation on protein turnover of rat skeletal muscle. Biochem J. 1976 Apr 15;156(1):71–80. doi: 10.1042/bj1560071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gronostajski R. M., Goldberg A. L., Pardee A. B. The role of increased proteolysis in the atrophy and arrest of proliferation in serum-deprived fibroblasts. J Cell Physiol. 1984 Oct;121(1):189–198. doi: 10.1002/jcp.1041210124. [DOI] [PubMed] [Google Scholar]
  10. Gronostajski R. M., Pardee A. B., Goldberg A. L. The ATP dependence of the degradation of short- and long-lived proteins in growing fibroblasts. J Biol Chem. 1985 Mar 25;260(6):3344–3349. [PubMed] [Google Scholar]
  11. Harris C. I., Maltin C. A., Palmer R. M., Reeds P. J., Wilson A. B. Biochemical and morphological observations of skeletal muscles incubated in vitro. Prog Clin Biol Res. 1985;180:637–639. [PubMed] [Google Scholar]
  12. Hershko A., Ciechanover A. Mechanisms of intracellular protein breakdown. Annu Rev Biochem. 1982;51:335–364. doi: 10.1146/annurev.bi.51.070182.002003. [DOI] [PubMed] [Google Scholar]
  13. Hopgood M. F., Clark M. G., Ballard F. J. Inhibition of protein degradation in isolated rat hepatocytes. Biochem J. 1977 May 15;164(2):399–407. doi: 10.1042/bj1640399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Joffe M., Savage N., Isaacs H. Increased muscle calcium. A possible cause of mitochondrial dysfunction and cellular necrosis in denervated rat skeletal muscle. Biochem J. 1981 Jun 15;196(3):663–667. doi: 10.1042/bj1960663. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kameyama T., Etlinger J. D. Calcium-dependent regulation of protein synthesis and degradation in muscle. Nature. 1979 May 24;279(5711):344–346. doi: 10.1038/279344a0. [DOI] [PubMed] [Google Scholar]
  16. Kay J., Heath R., Dahlmann B., Kuehn L., Stauber W. T. Serine proteinases and protein breakdown in muscle. Prog Clin Biol Res. 1985;180:195–205. [PubMed] [Google Scholar]
  17. Lewis S. E., Anderson P., Goldspink D. F. The effects of calcium on protein turnover in skeletal muscles of the rat. Biochem J. 1982 Apr 15;204(1):257–264. doi: 10.1042/bj2040257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Libby P., Goldberg A. L. Comparison of the control and pathways for degradation of the acetylcholine receptor and average protein in cultured muscle cells. J Cell Physiol. 1981 May;107(2):185–194. doi: 10.1002/jcp.1041070204. [DOI] [PubMed] [Google Scholar]
  19. Libby P., Goldberg A. L. Leupeptin, a protease inhibitor, decreases protein degradation in normal and diseased muscles. Science. 1978 Feb 3;199(4328):534–536. doi: 10.1126/science.622552. [DOI] [PubMed] [Google Scholar]
  20. Long W. M., Chua B. H., Lautensack N., Morgan H. E. Effects of amino acid methyl esters on cardiac lysosomes and protein degradation. Am J Physiol. 1983 Jul;245(1):C101–C112. doi: 10.1152/ajpcell.1983.245.1.C101. [DOI] [PubMed] [Google Scholar]
  21. Millward D. J., Bates P. C., Brown J. G., Cox M., Giugliano R., Jepson M., Pell J. Role of thyroid, insulin and corticosteroid hormones in the physiological regulation of proteolysis in muscle. Prog Clin Biol Res. 1985;180:531–542. [PubMed] [Google Scholar]
  22. Poli A., Gordon P. B., Schwarze P. E., Grinde B., Seglen P. O. Effects of insulin and anchorage on hepatocytic protein metabolism and amino acid transport. J Cell Sci. 1981 Apr;48:1–18. doi: 10.1242/jcs.48.1.1. [DOI] [PubMed] [Google Scholar]
  23. Rodemann H. P., Waxman L., Goldberg A. L. The stimulation of protein degradation in muscle by Ca2+ is mediated by prostaglandin E2 and does not require the calcium-activated protease. J Biol Chem. 1982 Aug 10;257(15):8716–8723. [PubMed] [Google Scholar]
  24. Schworer C. M., Shiffer K. A., Mortimore G. E. Quantitative relationship between autophagy and proteolysis during graded amino acid deprivation in perfused rat liver. J Biol Chem. 1981 Jul 25;256(14):7652–7658. [PubMed] [Google Scholar]
  25. Seglen P. O., Grinde B., Solheim A. E. Inhibition of the lysosomal pathway of protein degradation in isolated rat hepatocytes by ammonia, methylamine, chloroquine and leupeptin. Eur J Biochem. 1979 Apr 2;95(2):215–225. doi: 10.1111/j.1432-1033.1979.tb12956.x. [DOI] [PubMed] [Google Scholar]
  26. Seider M. J., Kapp R., Chen C. P., Booth F. W. The effects of cutting or of stretching skeletal muscle in vitro on the rates of protein synthesis and degradation. Biochem J. 1980 Apr 15;188(1):247–254. doi: 10.1042/bj1880247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Sugden P. H. The effects of calcium ions, ionophore A23187 and inhibition of energy metabolism on protein degradation in the rat diaphragm and epitrochlearis muscles in vitro. Biochem J. 1980 Sep 15;190(3):593–603. doi: 10.1042/bj1900593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Tanaka K., Waxman L., Goldberg A. L. Vanadate inhibits the ATP-dependent degradation of proteins in reticulocytes without affecting ubiquitin conjugation. J Biol Chem. 1984 Mar 10;259(5):2803–2809. [PubMed] [Google Scholar]
  29. Tischler M. E., Desautels M., Goldberg A. L. Does leucine, leucyl-tRNA, or some metabolite of leucine regulate protein synthesis and degradation in skeletal and cardiac muscle? J Biol Chem. 1982 Feb 25;257(4):1613–1621. [PubMed] [Google Scholar]
  30. Umezawa H. Structures and activities of protease inhibitors of microbial origin. Methods Enzymol. 1976;45:678–695. doi: 10.1016/s0076-6879(76)45058-9. [DOI] [PubMed] [Google Scholar]
  31. WAALKES T. P., UDENFRIEND S. A fluorometric method for the estimation of tyrosine in plasma and tissues. J Lab Clin Med. 1957 Nov;50(5):733–736. [PubMed] [Google Scholar]
  32. Ward W. F., Chua B. L., Li J. B., Morgan H. E., Mortimore G. E. Inhibition of basal and deprivation-induced proteolysis by leupeptin and pepstatin in perfused rat liver and heart. Biochem Biophys Res Commun. 1979 Mar 15;87(1):92–98. doi: 10.1016/0006-291x(79)91651-6. [DOI] [PubMed] [Google Scholar]
  33. Waxman L. Calcium-activated proteases in mammalian tissues. Methods Enzymol. 1981;80(Pt 100):664–680. doi: 10.1016/s0076-6879(81)80051-1. [DOI] [PubMed] [Google Scholar]
  34. Zeman R. J., Kameyama T., Matsumoto K., Bernstein P., Etlinger J. D. Regulation of protein degradation in muscle by calcium. Evidence for enhanced nonlysosomal proteolysis associated with elevated cytosolic calcium. J Biol Chem. 1985 Nov 5;260(25):13619–13624. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES