Abstract
Exposure of rat L6 cells in culture to exogenous polyamines led to a very large increase in the activity of spermidine/spermine N1-acetyltransferase. Spermine was more potent than spermidine in bringing about this increase, but in both cases the elevated acetyltransferase activity increased the cellular conversion of spermidine into putrescine. The N1-acetyltransferase turned over very rapidly in the L6 cells, with a half-life of 9 min after spermidine and 18 min after spermine. A wide variety of synthetic polyamine analogues also brought about a substantial induction of spermidine/spermine N1-acetyltransferase activity. These included sym-norspermidine, sym-norspermine, sym-homospermidine, N4-substituted spermidine derivatives, 1,3,6-triaminohexane, 1,4,7-triaminoheptane and deoxyspergualin, which were comparable with spermidine in their potency, and N1N8-bis(ethyl)spermidine, N1N9-bis(ethyl)homospermidine, methylglyoxal bis(guanylhydrazone), ethylglyoxal bis(guanylhydrazone) and 1,1'-[(methylethanediylidene)dinitrilo]bis(3-amino-guanidine ), which were even more active than spermidine. It is suggested that these polyamine analogues may bring about a decrease in cellular polyamines not only by inhibiting biosynthesis but by stimulating the degradation of spermidine into putrescine.
Full text
PDF![581](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0124/1147172/20a46d5b9fd5/biochemj00272-0262.png)
![582](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0124/1147172/f47985e4393e/biochemj00272-0263.png)
![583](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0124/1147172/b3cd6d0b31df/biochemj00272-0264.png)
![584](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0124/1147172/3198b62f247c/biochemj00272-0265.png)
![585](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0124/1147172/eccb050e12f8/biochemj00272-0266.png)
![586](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0124/1147172/7847141e9107/biochemj00272-0267.png)
![587](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0124/1147172/888e0fb6c105/biochemj00272-0268.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bolkenius F. N., Bey P., Seiler N. Specific inhibition of polyamine oxidase in vivo is a method for the elucidation of its physiological role. Biochim Biophys Acta. 1985 Jan 28;838(1):69–76. doi: 10.1016/0304-4165(85)90251-x. [DOI] [PubMed] [Google Scholar]
- Bolkenius F. N., Seiler N. Acetylderivatives as intermediates in polyamine catabolism. Int J Biochem. 1981;13(3):287–292. doi: 10.1016/0020-711x(81)90080-x. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Casero R. A., Jr, Bergeron R. J., Porter C. W. Treatment with alpha-difluoromethylornithine plus a spermidine analog leads to spermine depletion and growth inhibition in cultured L1210 leukemia cells. J Cell Physiol. 1984 Dec;121(3):476–482. doi: 10.1002/jcp.1041210305. [DOI] [PubMed] [Google Scholar]
- Danzin C., Bolkenius F. N., Claverie N., Wagner J., Grove J. Secretin-induced accumulation of N1-acetylspermidine and putrescine in the rat pancreas. Biochem Biophys Res Commun. 1982 Dec 31;109(4):1234–1239. doi: 10.1016/0006-291x(82)91909-x. [DOI] [PubMed] [Google Scholar]
- Della Ragione F., Pegg A. E. Studies of the specificity and kinetics of rat liver spermidine/spermine N1-acetyltransferase. Biochem J. 1983 Sep 1;213(3):701–706. doi: 10.1042/bj2130701. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Erwin B. G., Persson L., Pegg A. E. Differential inhibition of histone and polyamine acetylases by multisubstrate analogues. Biochemistry. 1984 Aug 28;23(18):4250–4255. doi: 10.1021/bi00313a036. [DOI] [PubMed] [Google Scholar]
- Hölttä E. Oxidation of spermidine and spermine in rat liver: purification and properties of polyamine oxidase. Biochemistry. 1977 Jan 11;16(1):91–100. doi: 10.1021/bi00620a015. [DOI] [PubMed] [Google Scholar]
- Jänne J., Hölttä E., Kallio A., Käpyaho K. Role of polyamines and their antimetabolites in clinical medicine. Spec Top Endocrinol Metab. 1983;5:227–293. [PubMed] [Google Scholar]
- Jänne J., Pösö H., Raina A. Polyamines in rapid growth and cancer. Biochim Biophys Acta. 1978 Apr 6;473(3-4):241–293. doi: 10.1016/0304-419x(78)90015-x. [DOI] [PubMed] [Google Scholar]
- Karvonen E., Pösö H. Stabilization of ornithine decarboxylase and N1-spermidine acetyltransferase in rat liver by methylglyoxal bis(guanylhydrazone). Biochim Biophys Acta. 1984 Dec 7;791(2):239–243. doi: 10.1016/0167-4838(84)90014-1. [DOI] [PubMed] [Google Scholar]
- Matsui-Yuasa I., Otani S., Shu Z. W., Morisawa S. Phorbol esters stimulate spermidine/spermine N1-acetyltransferase activity in mitogen-stimulated bovine lymphocytes. FEBS Lett. 1984 Dec 10;178(2):297–300. doi: 10.1016/0014-5793(84)80620-1. [DOI] [PubMed] [Google Scholar]
- Matsui I., Pegg A. E. Induction of spermidine N1-acetyltransferase in rat kidney by treatment with folic acid. FEBS Lett. 1982 Mar 22;139(2):205–208. doi: 10.1016/0014-5793(82)80852-1. [DOI] [PubMed] [Google Scholar]
- Matsui I., Wiegand L., Pegg A. E. Properties of spermidine N-acetyltransferase from livers of rats treated with carbon tetrachloride and its role in the conversion of spermidine into putrescine. J Biol Chem. 1981 Mar 10;256(5):2454–2459. [PubMed] [Google Scholar]
- Pegg A. E., Erwin B. G. Induction of spermidine/spermine N1-acetyltransferase in rat tissues by polyamines. Biochem J. 1985 Oct 15;231(2):285–289. doi: 10.1042/bj2310285. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pegg A. E., Erwin B. G., Persson L. Induction of spermidine/spermine N1-acetyltransferase by methylglyoxal bis(guanylhydrazone). Biochim Biophys Acta. 1985 Oct 17;842(2-3):111–118. doi: 10.1016/0304-4165(85)90192-8. [DOI] [PubMed] [Google Scholar]
- Pegg A. E. Inhibitors of S-adenosylmethionine decarboxylase. Methods Enzymol. 1983;94:239–247. doi: 10.1016/s0076-6879(83)94042-9. [DOI] [PubMed] [Google Scholar]
- Pegg A. E., McCann P. P. Polyamine metabolism and function. Am J Physiol. 1982 Nov;243(5):C212–C221. doi: 10.1152/ajpcell.1982.243.5.C212. [DOI] [PubMed] [Google Scholar]
- Pegg A. E., Seely J. E., Pösö H., della Ragione F., Zagon I. A. Polyamine biosynthesis and interconversion in rodent tissues. Fed Proc. 1982 Dec;41(14):3065–3072. [PubMed] [Google Scholar]
- Persson L., Pegg A. E. Studies of the induction of spermidine/spermine N1-acetyltransferase using a specific antiserum. J Biol Chem. 1984 Oct 25;259(20):12364–12367. [PubMed] [Google Scholar]
- Porter C. W., Cavanaugh P. F., Jr, Stolowich N., Ganis B., Kelly E., Bergeron R. J. Biological properties of N4- and N1,N8-spermidine derivatives in cultured L1210 leukemia cells. Cancer Res. 1985 May;45(5):2050–2057. [PubMed] [Google Scholar]
- Ragione F. D., Pegg A. E. Purification and characterization of spermidine/spermine N1-acetyltransferase from rat liver. Biochemistry. 1982 Nov 23;21(24):6152–6158. doi: 10.1021/bi00267a020. [DOI] [PubMed] [Google Scholar]
- Seidenfeld J., Marton L. J. Depletion of intracellular putrescine and spermidine by alpha-difluromethylornithine does not inhibit proliferation of 9L rat brain tumor cells. Biochem Biophys Res Commun. 1979 Feb 28;86(4):1192–1198. doi: 10.1016/0006-291x(79)90243-2. [DOI] [PubMed] [Google Scholar]
- Seiler N., Bolkenius F. N., Knödgen B. The influence of catabolic reactions on polyamine excretion. Biochem J. 1985 Jan 1;225(1):219–226. doi: 10.1042/bj2250219. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Seiler N., Bolkenius F. N., Rennert O. M. Interconversion, catabolism and elimination of the polyamines. Med Biol. 1981 Dec;59(5-6):334–346. [PubMed] [Google Scholar]
- Shinki T., Takahashi N., Kadofuku T., Sato T., Suda T. Induction of spermidine N1-acetyltransferase by 1 alpha,25-dihydroxyvitamin D3 as an early common event in the target tissues of vitamin D. J Biol Chem. 1985 Feb 25;260(4):2185–2190. [PubMed] [Google Scholar]
- Stoscheck C. M., Erwin B. G., Florini J. R., Richman R. A., Pegg A. E. Effects of inhibitors of ornithine and S-adenosylmethionine decarboxylases on L6 myoblast proliferation. J Cell Physiol. 1982 Feb;110(2):161–168. doi: 10.1002/jcp.1041100209. [DOI] [PubMed] [Google Scholar]
- Tabor C. W., Tabor H. Polyamines. Annu Rev Biochem. 1984;53:749–790. doi: 10.1146/annurev.bi.53.070184.003533. [DOI] [PubMed] [Google Scholar]
- Wallace H. M., Macgowan S. H., Keir H. M. Polyamine metabolism in mammalian cells in culture. Biochem Soc Trans. 1985 Apr;13(2):329–330. doi: 10.1042/bst0130329. [DOI] [PubMed] [Google Scholar]
- Yaffe D. Retention of differentiation potentialities during prolonged cultivation of myogenic cells. Proc Natl Acad Sci U S A. 1968 Oct;61(2):477–483. doi: 10.1073/pnas.61.2.477. [DOI] [PMC free article] [PubMed] [Google Scholar]