Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1986 Dec 1;240(2):445–454. doi: 10.1042/bj2400445

The egasyn gene affects the processing of oligosaccharides of lysosomal beta-glucuronidase in liver.

R T Swank, K Pfister, D Miller, V Chapman
PMCID: PMC1147437  PMID: 3101673

Abstract

The accumulation of the relatively large amounts of beta-glucuronidase in microsomal fractions of normal mice depends on formation of complexes with the protein egasyn. Unexpectedly, it was found that the egasyn gene also affects the processing of beta-glucuronidase, which is segregated to lysosomes. In egasyn-positive mice lysosomal beta-glucuronidase from liver has a mean pI of 5.9 with a minor proportion at pI 5.4, whereas in egasyn-negative mice the proportion of the two lysosomal forms is reversed. Combined experiments measuring susceptibility to neuraminidase and to endoglycosidase H and specific binding to Ricinus communis lectin-agarose columns showed that the alterations in isoelectric point were associated with a decrease in complex oligosaccharides of lysosomal beta-glucuronidase in egasyn-positive mice. Since this alteration occurs not only in a congenic strain carrying the Eg0 gene but also in several other inbred strains that are homozygous for this gene, it is considered to be a genuine effect of the Eg gene rather than other genes that might regulate oligosaccharide processing. Also, the alteration is likely to be a result of direct physical interaction of the egasyn protein and lysosomal beta-glucuronidase, since a second lysosomal enzyme, beta-galactosidase, which does not form complexes with egasyn, is unaffected. The results suggest a model in which egasyn not only causes accumulation of beta-glucuronidase in the microsomal compartment but also acts upon the precursor to lysosomal beta-glucuronidase to alter its interaction with trans-Golgi-apparatus processing enzymes.

Full text

PDF
447

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baumann H., Doyle D. Effect of trypsin on the cell surface proteins of hepatoma tissue culture cells. Characterization of a carbohydrate-rich glycopeptide released from a calcium binding membrane glycoprotein. J Biol Chem. 1979 May 25;254(10):3935–3946. [PubMed] [Google Scholar]
  2. Belinsky S. A., Kauffman F. C., Sokolove P. M., Tsukuda T., Thurman R. G. Calcium-mediated inhibition of glucuronide production by epinephrine in the perfused rat liver. J Biol Chem. 1984 Jun 25;259(12):7705–7711. [PubMed] [Google Scholar]
  3. Beltramini-Guarini P., Gitzelmann R., Pfister K. Presence and absence of the microsomal beta-glucuronidase in mice correlates with differences in the processing of the lysosomal enzyme. Eur J Cell Biol. 1984 May;34(1):165–170. [PubMed] [Google Scholar]
  4. Brandt E. J., Elliott R. W., Swank R. T. Defective lysosomal enzyme secretion in kidneys of Chediak-Higashi (beige) mice. J Cell Biol. 1975 Dec;67(3):774–788. doi: 10.1083/jcb.67.3.774. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brandt E. J., Swank R. T. The Chediak-Higashi (beige) mutation in two mouse strains. Allelism and similarity in lysosomal dysfunction. Am J Pathol. 1976 Mar;82(3):573–588. [PMC free article] [PubMed] [Google Scholar]
  6. Breen G. A., Lusis A. J., Paigen K. Linkage of genetic determinants for mouse beta-galactosidase electrophoresis and activity. Genetics. 1977 Jan;85(1):73–84. doi: 10.1093/genetics/85.1.73. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Brown J. A., Jahreis G. P., Swank R. T. The synthesis and processing of beta-glucuronidase in normal and egasyn deficient mouse kidney. Biochem Biophys Res Commun. 1981 Mar 31;99(2):691–699. doi: 10.1016/0006-291x(81)91799-x. [DOI] [PubMed] [Google Scholar]
  8. Brown W. J., Farquhar M. G. The mannose-6-phosphate receptor for lysosomal enzymes is concentrated in cis Golgi cisternae. Cell. 1984 Feb;36(2):295–307. doi: 10.1016/0092-8674(84)90223-x. [DOI] [PubMed] [Google Scholar]
  9. Deutscher S. L., Creek K. E., Merion M., Hirschberg C. B. Subfractionation of rat liver Golgi apparatus: separation of enzyme activities involved in the biosynthesis of the phosphomannosyl recognition marker in lysosomal enzymes. Proc Natl Acad Sci U S A. 1983 Jul;80(13):3938–3942. doi: 10.1073/pnas.80.13.3938. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Deutscher S. L., Nuwayhid N., Stanley P., Briles E. I., Hirschberg C. B. Translocation across Golgi vesicle membranes: a CHO glycosylation mutant deficient in CMP-sialic acid transport. Cell. 1984 Dec;39(2 Pt 1):295–299. doi: 10.1016/0092-8674(84)90007-2. [DOI] [PubMed] [Google Scholar]
  11. Dizik M., Elliott R. W. A second gene affecting the sialylation of lysosomal alpha-mannosidase in mouse liver. Biochem Genet. 1978 Apr;16(3-4):247–260. doi: 10.1007/BF00484082. [DOI] [PubMed] [Google Scholar]
  12. Dunphy W. G., Fries E., Urbani L. J., Rothman J. E. Early and late functions associated with the Golgi apparatus reside in distinct compartments. Proc Natl Acad Sci U S A. 1981 Dec;78(12):7453–7457. doi: 10.1073/pnas.78.12.7453. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Fedde K. N., Sly W. S. Ricin-binding properties of acid hydrolases from isolated lysosomes implies prior processing by terminal transferases of the trans-Golgi apparatus. Biochem Biophys Res Commun. 1985 Dec 17;133(2):614–620. doi: 10.1016/0006-291x(85)90949-0. [DOI] [PubMed] [Google Scholar]
  14. Geuze H. J., Slot J. W., Strous G. J., Hasilik A., Von Figura K. Ultrastructural localization of the mannose 6-phosphate receptor in rat liver. J Cell Biol. 1984 Jun;98(6):2047–2054. doi: 10.1083/jcb.98.6.2047. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Goldberg D. E., Kornfeld S. Evidence for extensive subcellular organization of asparagine-linked oligosaccharide processing and lysosomal enzyme phosphorylation. J Biol Chem. 1983 Mar 10;258(5):3159–3165. [PubMed] [Google Scholar]
  16. HAYASHI M., NAKAJIMA Y., FISHMAN W. H. THE CYTOLOGIC DEMONSTRATION OF BETA-GLUCURONIDASE EMPLOYING NAPHTHOL AS-BI GLUCURONIDE AND HEXAZONIUM PARAROSANILIN; A PRELIMINARY REPORT. J Histochem Cytochem. 1964 Apr;12:293–297. doi: 10.1177/12.4.293. [DOI] [PubMed] [Google Scholar]
  17. Himeno M., Nishimura Y., Takahashi K., Kato K. The synthesis of rat liver lysosomes. III. Chemical composition of microsomal and lysosomal beta-glucuronidases purified from rat liver. J Biochem. 1978 Feb;83(2):511–518. doi: 10.1093/oxfordjournals.jbchem.a131938. [DOI] [PubMed] [Google Scholar]
  18. Hsieh P., Rosner M. R., Robbins P. W. Host-dependent variation of asparagine-linked oligosaccharides at individual glycosylation sites of Sindbis virus glycoproteins. J Biol Chem. 1983 Feb 25;258(4):2548–2554. [PubMed] [Google Scholar]
  19. Hsieh P., Rosner M. R., Robbins P. W. Selective cleavage by endo-beta-N-acetylglucosaminidase H at individual glycosylation sites of Sindbis virion envelope glycoproteins. J Biol Chem. 1983 Feb 25;258(4):2555–2561. [PubMed] [Google Scholar]
  20. Karl T. R., Chapman V. M. Linkage and expression of the Eg locus controlling inclusion of beta-glucuronidase into microsomes. Biochem Genet. 1974 May;11(5):367–372. doi: 10.1007/BF00486410. [DOI] [PubMed] [Google Scholar]
  21. Kornfeld R., Kornfeld S. Assembly of asparagine-linked oligosaccharides. Annu Rev Biochem. 1985;54:631–664. doi: 10.1146/annurev.bi.54.070185.003215. [DOI] [PubMed] [Google Scholar]
  22. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  23. Lusis A. J., Paigen K. Properties of mouse alpha-galactosidase. Biochim Biophys Acta. 1976 Jul 21;437(2):487–497. doi: 10.1016/0304-4165(76)90017-9. [DOI] [PubMed] [Google Scholar]
  24. Lusis A. J., Paigen K. The large scale isolation of mouse beta-glucuronidase and comparison of allozymes. J Biol Chem. 1978 Oct 25;253(20):7336–7345. [PubMed] [Google Scholar]
  25. Lusis A. J., Tomino S., Paigen K. Isolation, characterization, and radioimmunoassay of murine egasyn, a protein stabilizing glucuronidase membrane binding. J Biol Chem. 1976 Dec 25;251(24):7753–7760. [PubMed] [Google Scholar]
  26. Medda S., Swank R. T. Egasyn, a protein which determines the subcellular distribution of beta-glucuronidase, has esterase activity. J Biol Chem. 1985 Dec 15;260(29):15802–15808. [PubMed] [Google Scholar]
  27. Medda S., von Deimling O., Swank R. T. Identity of esterase-22 and egasyn, the protein which complexes with microsomal beta-glucuronidase. Biochem Genet. 1986 Apr;24(3-4):229–243. doi: 10.1007/BF00502791. [DOI] [PubMed] [Google Scholar]
  28. Miller A. L., Kress B. C., Stein R., Kinnon C., Kern H., Schneider J. A., Harms E. Properties of N-acetyl-beta-D-hexosaminidase from isolated normal and I-cell lysosomes. J Biol Chem. 1981 Sep 10;256(17):9352–9362. [PubMed] [Google Scholar]
  29. Mizuochi T., Nishimura Y., Kato K., Kobata A. Comparative studies of asparagine-linked oligosaccharide structures of rat liver microsomal and lysosomal beta-glucuronidases. Arch Biochem Biophys. 1981 Jun;209(1):298–303. doi: 10.1016/0003-9861(81)90284-8. [DOI] [PubMed] [Google Scholar]
  30. Owens J. W., Gammon K. L., Stahl P. D. Multiple forms of beta-glucuronidase in rat liver lysosomes and microsomes. Arch Biochem Biophys. 1975 Jan;166(1):258–272. doi: 10.1016/0003-9861(75)90387-2. [DOI] [PubMed] [Google Scholar]
  31. Potier M., Lu Shun Yan D., Womack J. E. Neuraminidase deficiency in the mouse. FEBS Lett. 1979 Dec 15;108(2):345–348. doi: 10.1016/0014-5793(79)80560-8. [DOI] [PubMed] [Google Scholar]
  32. Smith K., Ganschow R. E. Turnover of murine beta-glucuronidase. Comparison among liver, kidney, and spleen and between lysosomes and microsomes. J Biol Chem. 1978 Aug 10;253(15):5437–5442. [PubMed] [Google Scholar]
  33. Strawser L. D., Touster O. The cellular processing of lysosomal enzymes and related proteins. Rev Physiol Biochem Pharmacol. 1980;87:169–210. doi: 10.1007/BFb0030898. [DOI] [PubMed] [Google Scholar]
  34. Swallow D. M., West L. F., Van Elsen A. The role of lysosomal sialidase and beta-galactosidase in processing the complex carbohydrate chains on lysosomal enzymes and possibly other glycoproteins. Ann Hum Genet. 1984 Jul;48(Pt 3):215–221. doi: 10.1111/j.1469-1809.1984.tb01017.x. [DOI] [PubMed] [Google Scholar]
  35. Swank R. T., Paigen K. Biochemical and genetic evidence for a macromolecular -glucuronidase complex in microsomal membranes. J Mol Biol. 1973 Jul 5;77(3):371–389. doi: 10.1016/0022-2836(73)90445-2. [DOI] [PubMed] [Google Scholar]
  36. Tominco S., Paigen K. Egasyn, a protein complexed with microsomal beta-glucuronidase. J Biol Chem. 1975 Feb 10;250(3):1146–1148. [PubMed] [Google Scholar]
  37. Tulsiani D. R., Six H., Touster O. Rat liver microsomal and lysosomal beta-glucuronidases differ in both carbohydrate and amino acid compositions. Proc Natl Acad Sci U S A. 1978 Jul;75(7):3080–3084. doi: 10.1073/pnas.75.7.3080. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Varki A., Kornfeld S. The spectrum of anionic oligosaccharides released by endo-beta-N-acetylglucosaminidase H from glycoproteins. Structural studies and interactions with the phosphomannosyl receptor. J Biol Chem. 1983 Mar 10;258(5):2808–2818. [PubMed] [Google Scholar]
  39. Wassmer B., de Looze S. M., von Deimling O. H. Biochemistry and genetics of esterase-20 (ES-20), a second trimeric carboxylesterase of the house mouse (Mus musculus). II. A unique recombination reveals ES-20 as a hybrid enzyme. Biochem Genet. 1985 Oct;23(9-10):759–770. [PubMed] [Google Scholar]
  40. Watson G., Davey R. A., Labarca C., Paigen K. Genetic determination of kinetic parameters in beta-glucuronidase induction by androgen. J Biol Chem. 1981 Mar 25;256(6):3005–3011. [PubMed] [Google Scholar]
  41. Womack J. E., Yan D. L., Potier M. Gene for neuraminidase activity on mouse chromosome 17 near h-2: pleiotropic effects on multiple hydrolases. Science. 1981 Apr 3;212(4490):63–65. doi: 10.1126/science.7209520. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES