Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1987 Jun 15;244(3):497–502. doi: 10.1042/bj2440497

The effect of sn-2 fatty acid substitution on phospholipase C enzyme activities.

J S Bomalaski 1, M A Clark 1
PMCID: PMC1148023  PMID: 3446171

Abstract

The human monocyte cell line U937 expresses phospholipase A2 and phospholipase C activities and produces eicosanoids. The phospholipase C (PLC) activity exhibits substrate preference for phosphatidyl-choline (PC), rather than phosphatidylinositol or phosphatidylethanolamine. In order to characterize the PLC activity found in these cells, the effects of substitution of the sn-2 fatty acid on this activity were examined. PC substrates with palmitic acid (PC-2P), oleic acid (PC-2O), arachidonic acid (PC-2A) and linoleic acid (PC-2L) at the sn-2 position were used. The sn-1 fatty acid was palmitic acid. PC-2L and PC-2A with the longer-chain less-saturated fatty acids linoleic acid and arachidonic acid esterified at sn-2 were found to be better substrates for PLC activity than PC-2P or PC-2O in these cells. This preference was maintained even when substrate phospholipid was solubilized in non-ionic, anionic, cationic and zwitterionic amphiphiles. Furthermore, when a 500-fold excess of 1,2-diolein or 1,2-dipalmitin was added to the reaction, the specificity of the PLC activity for PC-2A and PC-2L remained unchanged. When similar experiments were performed with phosphatidylinositol as a substrate, we did not observe any effect when the sn-2 position was altered. These data show that the fatty acid constituent at the sn-2 position affects the observed PLC activity when phosphatidylcholine, but not phosphatidylinositol, is used as a substrate by these cells.

Full text

PDF
497

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bomalaski J. S., Clark M. A., Douglas S. D., Zurier R. B. Enhanced phospholipase A2 and C activities of peripheral blood polymorphonuclear leukocytes from patients with rheumatoid arthritis. J Leukoc Biol. 1985 Nov;38(5):649–654. doi: 10.1002/jlb.38.5.649. [DOI] [PubMed] [Google Scholar]
  2. Bomalaski J. S., Clark M. A., Zurier R. B. Enhanced phospholipase activity in peripheral blood monocytes from patients with rheumatoid arthritis. Arthritis Rheum. 1986 Mar;29(3):312–318. doi: 10.1002/art.1780290302. [DOI] [PubMed] [Google Scholar]
  3. Bomalaski J. S., Goldstein C. S., Dailey A. T., Douglas S. D., Zurier R. B. Uptake of fatty acids and their mobilization from phospholipids in cultured monocyte-macrophages from rheumatoid arthritis patients. Clin Immunol Immunopathol. 1986 May;39(2):198–212. doi: 10.1016/0090-1229(86)90084-x. [DOI] [PubMed] [Google Scholar]
  4. Bomalaski J. S., Hirata F., Clark M. A. Aspirin inhibits phospholipase C. Biochem Biophys Res Commun. 1986 Aug 29;139(1):115–121. doi: 10.1016/s0006-291x(86)80087-0. [DOI] [PubMed] [Google Scholar]
  5. Bonney R. J., Naruns P., Davies P., Humes J. L. Antigen-antibody complexes stimulate the synthesis and release of prostaglandins by mouse peritoneal macrophages. Prostaglandins. 1979 Oct;18(4):605–616. doi: 10.1016/0090-6980(79)90027-3. [DOI] [PubMed] [Google Scholar]
  6. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  7. Chau L. Y., Tai H. H. Resolution into two different forms and study of the properties of phosphatidylinositol-specific phospholipase C from human platelet cytosol. Biochim Biophys Acta. 1982 Nov 12;713(2):344–351. [PubMed] [Google Scholar]
  8. Cobb M. A., Hsueh W., Pachman L. M., Barnes W. T. Prostaglandin biosynthesis by a human macrophage-like cell line, U937. J Reticuloendothel Soc. 1983 Mar;33(3):197–206. [PubMed] [Google Scholar]
  9. Eisen D., Bartolf M., Franson R. C. Inhibition of lysosomal phospholipases C and A in rabbit alveolar macrophages, polymorphonuclear leukocytes and rat liver by sodium bisulfite. Biochim Biophys Acta. 1984 Mar 27;793(1):10–17. doi: 10.1016/0005-2760(84)90047-x. [DOI] [PubMed] [Google Scholar]
  10. Flower R. J. Drugs which inhibit prostaglandin biosynthesis. Pharmacol Rev. 1974 Mar;26(1):33–67. [PubMed] [Google Scholar]
  11. Flower R. Steroidal antiinflammatory drugs as inhibitors of phospholipase A2. Adv Prostaglandin Thromboxane Res. 1978;3:105–112. [PubMed] [Google Scholar]
  12. Helenius A., Simons K. Solubilization of membranes by detergents. Biochim Biophys Acta. 1975 Mar 25;415(1):29–79. doi: 10.1016/0304-4157(75)90016-7. [DOI] [PubMed] [Google Scholar]
  13. Hirasawa K., Irvine R. F., Dawson R. M. Heterogeneity of the calcium-dependent phosphatidylinositol phosphodiesterase in rat brain. Biochem J. 1982 Aug 1;205(2):437–442. doi: 10.1042/bj2050437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hirasawa K., Irvine R. F., Dawson R. M. Heterogeneity of the calcium-dependent phosphatidylinositol-phosphodiesterase of rat liver kidney, as revealed by column chromatofocusing. Biochem Biophys Res Commun. 1982 Jul 30;107(2):533–537. doi: 10.1016/0006-291x(82)91524-8. [DOI] [PubMed] [Google Scholar]
  15. Hofmann S. L., Majerus P. W. Identification and properties of two distinct phosphatidylinositol-specific phospholipase C enzymes from sheep seminal vesicular glands. J Biol Chem. 1982 Jun 10;257(11):6461–6469. [PubMed] [Google Scholar]
  16. Hofmann S. L., Majerus P. W. Modulation of phosphatidylinositol-specific phospholipase C activity by phospholipid interactions, diglycerides, and calcium ions. J Biol Chem. 1982 Dec 10;257(23):14359–14364. [PubMed] [Google Scholar]
  17. Holub B. J., Celi B. Evaluation of the fatty acid selectivity of a phosphatidylinositol-specific cytosolic phospholipase C from pig and human platelets. Can J Biochem Cell Biol. 1984 Feb-Mar;62(2-3):115–120. doi: 10.1139/o84-017. [DOI] [PubMed] [Google Scholar]
  18. Irvine R. F., Hemington N., Dawson R. M. The calcium-dependent phosphatidylinositol-phosphodiesterase of rat brain. Mechanisms of suppression and stimulation. Eur J Biochem. 1979 Sep;99(3):525–530. doi: 10.1111/j.1432-1033.1979.tb13284.x. [DOI] [PubMed] [Google Scholar]
  19. Irvine R. F. How is the level of free arachidonic acid controlled in mammalian cells? Biochem J. 1982 Apr 15;204(1):3–16. doi: 10.1042/bj2040003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lenstra R., Mauco G., Chap H., Douste-Blazy L. Studies on enzymes related to diacylglycerol production in activated platelets. I. Phosphatidylinositol-specific phospholipase C: further characterization using a simple method for determination of activity. Biochim Biophys Acta. 1984 Feb 9;792(2):199–206. doi: 10.1016/0005-2760(84)90223-6. [DOI] [PubMed] [Google Scholar]
  21. Lichtenberg D., Robson R. J., Dennis E. A. Solubilization of phospholipids by detergents. Structural and kinetic aspects. Biochim Biophys Acta. 1983 May 24;737(2):285–304. doi: 10.1016/0304-4157(83)90004-7. [DOI] [PubMed] [Google Scholar]
  22. Little C. Phospholipase C from Bacillus cereus. Action on some artificial lecithins. Acta Chem Scand B. 1977;31(4):267–272. doi: 10.3891/acta.chem.scand.31b-0267. [DOI] [PubMed] [Google Scholar]
  23. Low M. G., Carroll R. C., Weglicki W. B. Multiple forms of phosphoinositide-specific phospholipase C of different relative molecular masses in animal tissues. Evidence for modification of the platelet enzyme by Ca2+-dependent proteinase. Biochem J. 1984 Aug 1;221(3):813–820. doi: 10.1042/bj2210813. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Low M. G., Weglicki W. B. Resolution of myocardial phospholipase C into several forms with distinct properties. Biochem J. 1983 Nov 1;215(2):325–334. doi: 10.1042/bj2150325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Myers R. F., Siegel M. I. The appearance of phospholipase activity in the human macrophage-like cell line U937 during dimethyl sulfoxide induced differentiation. Biochem Biophys Res Commun. 1984 Jan 13;118(1):217–224. doi: 10.1016/0006-291x(84)91089-1. [DOI] [PubMed] [Google Scholar]
  26. Otnaess A. B., Little C., Sletten K., Wallin R., Johnsen S., Flengsrud R., Prydz H. Some characteristics of phospholipase C from Bacillus cereus. Eur J Biochem. 1977 Oct 3;79(2):459–468. doi: 10.1111/j.1432-1033.1977.tb11828.x. [DOI] [PubMed] [Google Scholar]
  27. Pawlowski N. A., Kaplan G., Hamill A. L., Cohn Z. A., Scott W. A. Arachidonic acid metabolism by human monocytes. Studies with platelet-depleted cultures. J Exp Med. 1983 Aug 1;158(2):393–412. doi: 10.1084/jem.158.2.393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Roberts M. F., Otnaess A. B., Kensil C. A., Dennis E. A. The specificity of phospholipase A2 and phospholipase C in a mixed micellar system. J Biol Chem. 1978 Feb 25;253(4):1252–1257. [PubMed] [Google Scholar]
  29. Ross M. I., Deems R. A., Jesaitis A. J., Dennis E. A., Ulevitch R. J. Phospholipase activities of the P388D1 macrophage-like cell line. Arch Biochem Biophys. 1985 Apr;238(1):247–258. doi: 10.1016/0003-9861(85)90162-6. [DOI] [PubMed] [Google Scholar]
  30. Scott W. A., Pawlowski N. A., Andreach M., Cohn Z. A. Resting macrophages produce distinct metabolites from exogenous arachidonic acid. J Exp Med. 1982 Feb 1;155(2):535–547. doi: 10.1084/jem.155.2.535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Scott W. A., Pawlowski N. A., Murray H. W., Andreach M., Zrike J., Cohn Z. A. Regulation of arachidonic acid metabolism by macrophage activation. J Exp Med. 1982 Apr 1;155(4):1148–1160. doi: 10.1084/jem.155.4.1148. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Scott W. A., Zrike J. M., Hamill A. L., Kempe J., Cohn Z. A. Regulation of arachidonic acid metabolites in macrophages. J Exp Med. 1980 Aug 1;152(2):324–335. doi: 10.1084/jem.152.2.324. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Waite M. Approaches to the study of mammalian cellular phospholipases. J Lipid Res. 1985 Dec;26(12):1379–1388. [PubMed] [Google Scholar]
  34. Wightman P. D., Dahlgren M. E., Hall J. C., Davies P., Bonney R. J. Identification and characterization of a phospholipase C activity in resident mouse peritoneal macrophages. Inhibition of the enzyme by phenothiazines. Biochem J. 1981 Aug 1;197(2):523–526. doi: 10.1042/bj1970523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Wolf R. A., Gross R. W. Identification of neutral active phospholipase C which hydrolyzes choline glycerophospholipids and plasmalogen selective phospholipase A2 in canine myocardium. J Biol Chem. 1985 Jun 25;260(12):7295–7303. [PubMed] [Google Scholar]
  36. el-Sayed M. Y., DeBose C. D., Coury L. A., Roberts M. F. Sensitivity of phospholipase C (Bacillus cereus) activity to phosphatidylcholine structural modifications. Biochim Biophys Acta. 1985 Dec 4;837(3):325–335. doi: 10.1016/0005-2760(85)90056-6. [DOI] [PubMed] [Google Scholar]
  37. el-Sayed M. Y., Roberts M. F. Charged detergents enhance the activity of phospholipase C (Bacillus cereus) towards micellar short-chain phosphatidylcholine. Biochim Biophys Acta. 1985 Sep 20;831(1):133–141. doi: 10.1016/0167-4838(85)90160-8. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES