Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1990 Nov 1;271(3):743–748. doi: 10.1042/bj2710743

Guanosine 5'-[gamma-thio]triphosphate-stimulated hydrolysis of phosphatidylinositol 4,5-bisphosphate in HL-60 granulocytes. Evidence that the guanine nucleotide acts by relieving phospholipase C from an inhibitory constraint.

M Camps 1, C F Hou 1, K H Jakobs 1, P Gierschik 1
PMCID: PMC1149625  PMID: 2173906

Abstract

Myeloid differentiated human leukaemia (HL-60) cells contain a soluble phospholipase C that hydrolysed phosphatidylinositol 4.5-bisphosphate and was markedly stimulated by the metabolically stable GTP analogue guanosine 5'-[gamma-thio]triphosphate (GTP[S]). Half-maximal and maximal (up to 5-fold) stimulation of inositol phosphate formation by GTP[S] occurred at 1.5 microM and 30 microM respectively. Other nucleotides (GTP, GDP, GMP, guanosine 5'-[beta-thio]diphosphate. ATP, adenosine 5'-[gamma-thio]triphosphate, UTP) did not affect phospholipase C activity, GTP[S] stimulation of inositol phosphate accumulation was inhibited by excess GDP, but not by ADP. The effect of GTP[S] on inositol phosphate formation was absolutely dependent on and markedly stimulated by free Ca2+ (median effective concn. approximately 100 nM). Analysis of inositol phosphates by anion-exchange chromatography revealed InsP3 as the major product of GTP[S]-stimulated phospholipase C activity. In the absence of GTP[S], specific phospholipase C activity was markedly decreased when tested at high protein concentrations, whereas GTP[S] stimulation of the enzyme was markedly enhanced under these conditions. As both basal and GTP[S]-stimulated inositol phosphate formation were linear with time whether studied at low or high protein concentration, these results suggest that (a) phospholipase C is under an inhibitory constraint and (b) GTP[S] relieves this inhibition, most likely by activating a soluble GTP-binding protein.

Full text

PDF
746

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anthes J. C., Eckel S., Siegel M. I., Egan R. W., Billah M. M. Phospholipase D in homogenates from HL-60 granulocytes: implications of calcium and G protein control. Biochem Biophys Res Commun. 1989 Aug 30;163(1):657–664. doi: 10.1016/0006-291x(89)92187-6. [DOI] [PubMed] [Google Scholar]
  2. Baldassare J. J., Fisher G. J. Regulation of membrane-associated and cytosolic phospholipase C activities in human platelets by guanosine triphosphate. J Biol Chem. 1986 Sep 15;261(26):11942–11944. [PubMed] [Google Scholar]
  3. Baldassare J. J., Knipp M. A., Henderson P. A., Fisher G. J. GTP gamma S-stimulated hydrolysis of phosphatidylinositol-4,5-bisphosphate soluble phospholipase C from human platelets requires soluble GTP-binding protein. Biochem Biophys Res Commun. 1988 Jul 15;154(1):351–357. doi: 10.1016/0006-291x(88)90692-4. [DOI] [PubMed] [Google Scholar]
  4. Balsinde J., Diez E., Mollinedo F. Phosphatidylinositol-specific phospholipase D: a pathway for generation of a second messenger. Biochem Biophys Res Commun. 1988 Jul 29;154(2):502–508. doi: 10.1016/0006-291x(88)90168-4. [DOI] [PubMed] [Google Scholar]
  5. Banno Y., Nakashima S., Tohmatsu T., Nozawa Y., Lapetina E. G. GTP and GDP will stimulate platelet cytosolic phospholipase C independently of Ca2+. Biochem Biophys Res Commun. 1986 Oct 30;140(2):728–734. doi: 10.1016/0006-291x(86)90792-8. [DOI] [PubMed] [Google Scholar]
  6. Bartfai T. Preparation of metal-chelate complexes and the design of steady-state kinetic experiments involving metal nucleotide complexes. Adv Cyclic Nucleotide Res. 1979;10:219–242. [PubMed] [Google Scholar]
  7. Berridge M. J., Dawson R. M., Downes C. P., Heslop J. P., Irvine R. F. Changes in the levels of inositol phosphates after agonist-dependent hydrolysis of membrane phosphoinositides. Biochem J. 1983 May 15;212(2):473–482. doi: 10.1042/bj2120473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Berridge M. J., Irvine R. F. Inositol phosphates and cell signalling. Nature. 1989 Sep 21;341(6239):197–205. doi: 10.1038/341197a0. [DOI] [PubMed] [Google Scholar]
  9. Bojanic D., Wallace M. A., Wojcikiewicz R. J., Fain J. N. Guanine nucleotide and pyrophosphate activate exogenous phosphatidylinositol 4,5-bisphosphate hydrolysis in rat liver plasma membranes. Biochem Biophys Res Commun. 1987 Sep 30;147(3):1088–1094. doi: 10.1016/s0006-291x(87)80182-1. [DOI] [PubMed] [Google Scholar]
  10. Bone E. A., Fretten P., Palmer S., Kirk C. J., Michell R. H. Rapid accumulation of inositol phosphates in isolated rat superior cervical sympathetic ganglia exposed to V1-vasopressin and muscarinic cholinergic stimuli. Biochem J. 1984 Aug 1;221(3):803–811. doi: 10.1042/bj2210803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  12. Bradford P. G., Rubin R. P. Guanine nucleotide regulation of phospholipase C activity in permeabilized rabbit neutrophils. Inhibition by pertussis toxin and sensitization to submicromolar calcium concentrations. Biochem J. 1986 Oct 1;239(1):97–102. doi: 10.1042/bj2390097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Brandt S. J., Dougherty R. W., Lapetina E. G., Niedel J. E. Pertussis toxin inhibits chemotactic peptide-stimulated generation of inositol phosphates and lysosomal enzyme secretion in human leukemic (HL-60) cells. Proc Natl Acad Sci U S A. 1985 May;82(10):3277–3280. doi: 10.1073/pnas.82.10.3277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Cockcroft S., Stutchfield J. Effect of pertussis toxin and neomycin on G-protein-regulated polyphosphoinositide phosphodiesterase. A comparison between HL60 membranes and permeabilized HL60 cells. Biochem J. 1988 Dec 1;256(2):343–350. doi: 10.1042/bj2560343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Cockcroft S., Stutchfield J. G-proteins, the inositol lipid signalling pathway, and secretion. Philos Trans R Soc Lond B Biol Sci. 1988 Jul 26;320(1199):247–265. doi: 10.1098/rstb.1988.0075. [DOI] [PubMed] [Google Scholar]
  16. Crooke S. T., Bennett C. F. Mammalian phosphoinositide-specific phospholipase C isoenzymes. Cell Calcium. 1989 Jul;10(5):309–323. doi: 10.1016/0143-4160(89)90057-2. [DOI] [PubMed] [Google Scholar]
  17. Deckmyn H., Tu S. M., Majerus P. W. Guanine nucleotides stimulate soluble phosphoinositide-specific phospholipase C in the absence of membranes. J Biol Chem. 1986 Dec 15;261(35):16553–16558. [PubMed] [Google Scholar]
  18. Dillon S. B., Murray J. J., Uhing R. J., Snyderman R. Regulation of inositol phospholipid and inositol phosphate metabolism in chemoattractant-activated human polymorphonuclear leukocytes. J Cell Biochem. 1987 Dec;35(4):345–359. doi: 10.1002/jcb.240350409. [DOI] [PubMed] [Google Scholar]
  19. Downes C. P., Mussat M. C., Michell R. H. The inositol trisphosphate phosphomonoesterase of the human erythrocyte membrane. Biochem J. 1982 Apr 1;203(1):169–177. doi: 10.1042/bj2030169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Exton J. H. Mechanisms of action of calcium-mobilizing agonists: some variations on a young theme. FASEB J. 1988 Aug;2(11):2670–2676. doi: 10.1096/fasebj.2.11.2456243. [DOI] [PubMed] [Google Scholar]
  21. Fain J. N., Wallace M. A., Wojcikiewicz R. J. Evidence for involvement of guanine nucleotide-binding regulatory proteins in the activation of phospholipases by hormones. FASEB J. 1988 Jul;2(10):2569–2574. doi: 10.1096/fasebj.2.10.2838362. [DOI] [PubMed] [Google Scholar]
  22. Fisher G. J., Baldassare J. J., Voorhees J. J. GTP-dependent hydrolysis of phosphatidylinositol-4,5-bisphosphate by soluble phospholipase C from adult human epidermis. J Invest Dermatol. 1989 Jun;92(6):831–836. doi: 10.1111/1523-1747.ep12696846. [DOI] [PubMed] [Google Scholar]
  23. Gierschik P., Jakobs K. H. Receptor-mediated ADP-ribosylation of a phospholipase C-stimulating G protein. FEBS Lett. 1987 Nov 16;224(1):219–223. doi: 10.1016/0014-5793(87)80451-9. [DOI] [PubMed] [Google Scholar]
  24. Gierschik P., Sidiropoulos D., Jakobs K. H. Two distinct Gi-proteins mediate formyl peptide receptor signal transduction in human leukemia (HL-60) cells. J Biol Chem. 1989 Dec 25;264(36):21470–21473. [PubMed] [Google Scholar]
  25. Gierschik P., Sidiropoulos D., Spiegel A., Jakobs K. H. Purification and immunochemical characterization of the major pertussis-toxin-sensitive guanine-nucleotide-binding protein of bovine-neutrophil membranes. Eur J Biochem. 1987 May 15;165(1):185–194. doi: 10.1111/j.1432-1033.1987.tb11210.x. [DOI] [PubMed] [Google Scholar]
  26. Gierschik P., Steisslinger M., Sidiropoulos D., Herrmann E., Jakobs K. H. Dual Mg2+ control of formyl-peptide-receptor--G-protein interaction in HL 60 cells. Evidence that the low-agonist-affinity receptor interacts with and activates the G-protein. Eur J Biochem. 1989 Jul 15;183(1):97–105. doi: 10.1111/j.1432-1033.1989.tb14901.x. [DOI] [PubMed] [Google Scholar]
  27. Grzeskowiak M., Della Bianca V., Cassatella M. A., Rossi F. Complete dissociation between the activation of phosphoinositide turnover and of NADPH oxidase by formyl-methionyl-leucyl-phenylalanine in human neutrophils depleted of Ca2+ and primed by subthreshold doses of phorbol 12,myristate 13,acetate. Biochem Biophys Res Commun. 1986 Mar 28;135(3):785–794. doi: 10.1016/0006-291x(86)90997-6. [DOI] [PubMed] [Google Scholar]
  28. Jolles J., Zwiers H., Dekker A., Wirtz K. W., Gispen W. H. Corticotropin-(1--24)-tetracosapeptide affects protein phosphorylation and polyphosphoinositide metabolism in rat brain. Biochem J. 1981 Jan 15;194(1):283–291. doi: 10.1042/bj1940283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Kikuchi A., Kozawa O., Kaibuchi K., Katada T., Ui M., Takai Y. Direct evidence for involvement of a guanine nucleotide-binding protein in chemotactic peptide-stimulated formation of inositol bisphosphate and trisphosphate in differentiated human leukemic (HL-60) cells. Reconstitution with Gi or Go of the plasma membranes ADP-ribosylated by pertussis toxin. J Biol Chem. 1986 Sep 5;261(25):11558–11562. [PubMed] [Google Scholar]
  30. Krause K. H., Schlegel W., Wollheim C. B., Andersson T., Waldvogel F. A., Lew P. D. Chemotactic peptide activation of human neutrophils and HL-60 cells. Pertussis toxin reveals correlation between inositol trisphosphate generation, calcium ion transients, and cellular activation. J Clin Invest. 1985 Oct;76(4):1348–1354. doi: 10.1172/JCI112109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Lew P. D., Monod A., Krause K. H., Waldvogel F. A., Biden T. J., Schlegel W. The role of cytosolic free calcium in the generation of inositol 1,4,5-trisphosphate and inositol 1,3,4-trisphosphate in HL-60 cells. Differential effects of chemotactic peptide receptor stimulation at distinct Ca2+ levels. J Biol Chem. 1986 Oct 5;261(28):13121–13127. [PubMed] [Google Scholar]
  32. Lochrie M. A., Simon M. I. G protein multiplicity in eukaryotic signal transduction systems. Biochemistry. 1988 Jul 12;27(14):4957–4965. doi: 10.1021/bi00414a001. [DOI] [PubMed] [Google Scholar]
  33. Meisenhelder J., Suh P. G., Rhee S. G., Hunter T. Phospholipase C-gamma is a substrate for the PDGF and EGF receptor protein-tyrosine kinases in vivo and in vitro. Cell. 1989 Jun 30;57(7):1109–1122. doi: 10.1016/0092-8674(89)90048-2. [DOI] [PubMed] [Google Scholar]
  34. Nishizuka Y. The molecular heterogeneity of protein kinase C and its implications for cellular regulation. Nature. 1988 Aug 25;334(6184):661–665. doi: 10.1038/334661a0. [DOI] [PubMed] [Google Scholar]
  35. Omann G. M., Allen R. A., Bokoch G. M., Painter R. G., Traynor A. E., Sklar L. A. Signal transduction and cytoskeletal activation in the neutrophil. Physiol Rev. 1987 Jan;67(1):285–322. doi: 10.1152/physrev.1987.67.1.285. [DOI] [PubMed] [Google Scholar]
  36. Pike M. C., Bruck M. E., Arndt C., Lee C. S. Chemoattractants stimulate phosphatidylinositol-4-phosphate kinase in human polymorphonuclear leukocytes. J Biol Chem. 1990 Feb 5;265(4):1866–1873. [PubMed] [Google Scholar]
  37. Rhee S. G., Suh P. G., Ryu S. H., Lee S. Y. Studies of inositol phospholipid-specific phospholipase C. Science. 1989 May 5;244(4904):546–550. doi: 10.1126/science.2541501. [DOI] [PubMed] [Google Scholar]
  38. Rock C. O., Jackowski S. Thrombin- and nucleotide-activated phosphatidylinositol 4,5-bisphosphate phospholipase C in human platelet membranes. J Biol Chem. 1987 Apr 25;262(12):5492–5498. [PubMed] [Google Scholar]
  39. Ryu S. H., Cho K. S., Lee K. Y., Suh P. G., Rhee S. G. Purification and characterization of two immunologically distinct phosphoinositide-specific phospholipases C from bovine brain. J Biol Chem. 1987 Sep 15;262(26):12511–12518. [PubMed] [Google Scholar]
  40. Smith C. D., Chang K. J. Regulation of brain phosphatidylinositol-4-phosphate kinase by GTP analogues. A potential role for guanine nucleotide regulatory proteins. J Biol Chem. 1989 Feb 25;264(6):3206–3210. [PubMed] [Google Scholar]
  41. Stutchfield J., Cockcroft S. Guanine nucleotides stimulate polyphosphoinositide phosphodiesterase and exocytotic secretion from HL60 cells permeabilized with streptolysin O. Biochem J. 1988 Mar 1;250(2):375–382. doi: 10.1042/bj2500375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Traynor-Kaplan A. E., Thompson B. L., Harris A. L., Taylor P., Omann G. M., Sklar L. A. Transient increase in phosphatidylinositol 3,4-bisphosphate and phosphatidylinositol trisphosphate during activation of human neutrophils. J Biol Chem. 1989 Sep 15;264(26):15668–15673. [PubMed] [Google Scholar]
  43. Urumow T., Wieland O. H. Stimulation of phosphatidylinositol 4-phosphate phosphorylation in human placenta membranes by GTP gamma S. FEBS Lett. 1986 Oct 27;207(2):253–257. doi: 10.1016/0014-5793(86)81499-5. [DOI] [PubMed] [Google Scholar]
  44. Wang P., Nishihata J., Takabori E., Yamamoto K., Toyoshima S., Osawa T. Purification and partial amino acid sequences of a phospholipase C-associated GTP-binding protein from calf thymocytes. J Biochem. 1989 Mar;105(3):461–466. doi: 10.1093/oxfordjournals.jbchem.a122687. [DOI] [PubMed] [Google Scholar]
  45. Wang P., Toyoshima S., Osawa T. Physical and functional association of cytosolic inositolphospholipid-specific phospholipase C of calf thymocytes with a GTP-binding protein. J Biochem. 1987 Nov;102(5):1275–1287. doi: 10.1093/oxfordjournals.jbchem.a122166. [DOI] [PubMed] [Google Scholar]
  46. Wang P., Toyoshima S., Osawa T. Properties of a novel GTP-binding protein which is associated with soluble phosphoinositides-specific phospholipase C. J Biochem. 1988 Jan;103(1):137–142. doi: 10.1093/oxfordjournals.jbchem.a122219. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES