Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1991 Jan 1;273(Pt 1):195–198. doi: 10.1042/bj2730195

L-lactate uptake by rat liver. Effect of food deprivation and substrate availability.

A Felipe 1, X Remesar 1, M Pastor-Anglada 1
PMCID: PMC1149898  PMID: 1989581

Abstract

We have studied the role of substrate availability on net L-lactate uptake by liver of anaesthetized fed and 24 h-fasted rats. L-Lactate was infused through a mesenteric vein at infusion rates equivalent to 0, 0.125, 0.25 and 0.5 times the basal turnover rate (Rt). By these means we were able to increase L-lactate portal concentrations up to 5.5 mM, without significant changes in portal pH. In the basal state (0 Rt), a net L-lactate uptake by liver was found in 24 h-fasted animals. No net balance was observed in fed rats. Infusion of L-lactate in fed animals failed to induce a net hepatic uptake, except when L-lactate levels in portal vein were raised above 5 mM. In fasted animals, net L-lactate uptake by liver increased linearly (r = 0.99) as a function of L-lactate concentration in the portal vein, even beyond the saturation of its specific carrier. It is concluded that, first, the L-lactate carrier does not limit net L-lactate uptake, and second, that substrate availability is an important factor modulating net L-lactate uptake by liver.

Full text

PDF
196

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Balkovetz D. F., Leibach F. H., Mahesh V. B., Ganapathy V. A proton gradient is the driving force for uphill transport of lactate in human placental brush-border membrane vesicles. J Biol Chem. 1988 Sep 25;263(27):13823–13830. [PubMed] [Google Scholar]
  2. Casado J., Pastor-Anglada M., Remesar X. Hepatic uptake of amino acids at mid-lactation in the rat. Biochem J. 1987 Jul 1;245(1):297–300. doi: 10.1042/bj2450297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Casado J., Remesar X., Pastor-Anglada M. Hepatic uptake of amino acids in late-pregnant rats. Effect of food deprivation. Biochem J. 1987 Nov 15;248(1):117–122. doi: 10.1042/bj2480117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Casado J., Remesar X., Pastor-Anglada M. Hepatic uptake of gluconeogenic substrates in late-pregnant and mid-lactating rats. Biosci Rep. 1987 Jul;7(7):587–592. doi: 10.1007/BF01119776. [DOI] [PubMed] [Google Scholar]
  5. Davis M. A., Williams P. E., Cherrington A. D. Net hepatic lactate balance following mixed meal feeding in the four-day fasted conscious dog. Metabolism. 1987 Sep;36(9):856–862. doi: 10.1016/0026-0495(87)90094-1. [DOI] [PubMed] [Google Scholar]
  6. Edlund G. L., Halestrap A. P. The kinetics of transport of lactate and pyruvate into rat hepatocytes. Evidence for the presence of a specific carrier similar to that in erythrocytes. Biochem J. 1988 Jan 1;249(1):117–126. doi: 10.1042/bj2490117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fafournoux P., Demigné C., Rémésy C. Carrier-mediated uptake of lactate in rat hepatocytes. Effects of pH and possible mechanisms for L-lactate transport. J Biol Chem. 1985 Jan 10;260(1):292–299. [PubMed] [Google Scholar]
  8. Fafournoux P., Rémésy C., Demigné C. Control of alanine metabolism in rat liver by transport processes or cellular metabolism. Biochem J. 1983 Mar 15;210(3):645–652. doi: 10.1042/bj2100645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Metcalfe H. K., Monson J. P., Cohen R. D., Padgham C. Enhanced carrier-mediated lactate entry into isolated hepatocytes from starved and diabetic rats. J Biol Chem. 1988 Dec 25;263(36):19505–19509. [PubMed] [Google Scholar]
  10. Metcalfe H. K., Monson J. P., Welch S. G., Cohen R. D. Inhibition of lactate removal by ketone bodies in rat liver. Evidence for a quantitatively important role of the plasma membrane lactate transporter in lactate metabolism. J Clin Invest. 1986 Sep;78(3):743–747. doi: 10.1172/JCI112635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Monson J. P., Smith J. A., Cohen R. D., Iles R. A. Evidence for a lactate transporter in the plasma membrane of the rat hepatocyte. Clin Sci (Lond) 1982 Apr;62(4):411–420. doi: 10.1042/cs0620411. [DOI] [PubMed] [Google Scholar]
  12. Pilkis S. J., el-Maghrabi M. R., Claus T. H. Hormonal regulation of hepatic gluconeogenesis and glycolysis. Annu Rev Biochem. 1988;57:755–783. doi: 10.1146/annurev.bi.57.070188.003543. [DOI] [PubMed] [Google Scholar]
  13. Pénicaud L., Ferré P., Kande J., Leturque A., Issad T., Girard J. Effect of anesthesia on glucose production and utilization in rats. Am J Physiol. 1987 Mar;252(3 Pt 1):E365–E369. doi: 10.1152/ajpendo.1987.252.3.E365. [DOI] [PubMed] [Google Scholar]
  14. Quintana I., Felipe A., Remesar X., Pastor-Anglada M. Carrier-mediated uptake of L-(+)-lactate in plasma membrane vesicles from rat liver. FEBS Lett. 1988 Aug 1;235(1-2):224–228. doi: 10.1016/0014-5793(88)81267-5. [DOI] [PubMed] [Google Scholar]
  15. Rémésy C., Demigné C. Changes in availability of glucogenic and ketogenic substrates and liver metabolism in fed or starved rats. Ann Nutr Metab. 1983;27(1):57–70. doi: 10.1159/000176624. [DOI] [PubMed] [Google Scholar]
  16. Rémésy C., Demigné C. Impaired lactate utilization in livers of rats fed high protein-diets. J Nutr. 1982 Jan;112(1):60–69. doi: 10.1093/jn/112.1.60. [DOI] [PubMed] [Google Scholar]
  17. Sestoft L., Bartels P. D., Folke M. Pathophysiology of metabolic acidosis: effect of low pH on the hepatic uptake of lactate, pyruvate and alanine. Clin Physiol. 1982 Feb;2(1):51–58. doi: 10.1111/j.1475-097x.1982.tb00006.x. [DOI] [PubMed] [Google Scholar]
  18. Sestoft L., Marshall M. O. Hepatic lactate uptake is enhanced by low pH at low lactate concentrations in perfused rat liver. Clin Sci (Lond) 1986 Jan;70(1):19–22. doi: 10.1042/cs0700019. [DOI] [PubMed] [Google Scholar]
  19. Sips H. J., Groen A. K., Tager J. M. Plasma-membrane transport of alanine is rate-limiting for its metabolism in rat-liver parenchymal cells. FEBS Lett. 1980 Oct 6;119(2):271–274. doi: 10.1016/0014-5793(80)80269-9. [DOI] [PubMed] [Google Scholar]
  20. Sugden M. C., Watts D. I., Marshall C. E. Effects of adrenaline on ketogenesis from long- and medium-chain fatty acids in starved rats. Biochem J. 1982 Jun 15;204(3):749–756. doi: 10.1042/bj2040749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Tiruppathi C., Balkovetz D. F., Ganapathy V., Miyamoto Y., Leibach F. H. A proton gradient, not a sodium gradient, is the driving force for active transport of lactate in rabbit intestinal brush-border membrane vesicles. Biochem J. 1988 Nov 15;256(1):219–223. doi: 10.1042/bj2560219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Trosper T. L., Philipson K. D. Lactate transport by cardiac sarcolemmal vesicles. Am J Physiol. 1987 May;252(5 Pt 1):C483–C489. doi: 10.1152/ajpcell.1987.252.5.C483. [DOI] [PubMed] [Google Scholar]
  23. Valcarce C., Cuezva J. M., Medina J. M. Increased gluconeogenesis in the rat at term gestation. Life Sci. 1985 Aug 12;37(6):553–560. doi: 10.1016/0024-3205(85)90468-0. [DOI] [PubMed] [Google Scholar]
  24. Zorzano A., Herrera E. Effects of anesthetics and starvation on in vivo gluconeogenesis in virgin and pregnant rats. Metabolism. 1984 Jun;33(6):553–558. doi: 10.1016/0026-0495(84)90011-8. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES