Abstract
A previously unknown haemagglutinin, named Sambucus nigra agglutinin-III (SNA-III), has been purified from the fruit of the elder (Sambucus nigra). Whereas elder bark agglutinin I (SNA-I) is highly specific for terminal alpha 2,6-linked sialic acid residues, SNA-III displays a high affinity for oligosaccharides containing exposed N-acetylgalactosamine and galactose residues. Different N-terminal sequences and the amino acid composition distinguish the fruit lectin from elder bark agglutinin II (SNA-II), which shows a similar carbohydrate specificity. The 40-fold higher affinity of SNA-III for asialofetuin than for human asialo-alpha 1-acid glycoprotein and human asialotransferrin respectively suggests a preference for O-linked glycans. SNA-III occurs mainly as a monomeric glycoprotein, but tends to form di- and oligo-meric aggregates. This aggregation seems to mediate the multivalent interaction, leading to agglutination. SDS/PAGE revealed two major polypeptides with apparent molecular masses of 32 and 33 kDa respectively. This heterogeneity is probably a result of proteolysis in the C-terminal region. Binding to concanavalin A and susceptibility to peptide: N-glycosidase F indicated the presence of N-glycosidically linked oligosaccharides.
Full text
PDFImages in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ahmed H., Gabius H. J. Purification and properties of a Ca2+-independent sialic acid-binding lectin from human placenta with preferential affinity to O-acetylsialic acids. J Biol Chem. 1989 Nov 5;264(31):18673–18678. [PubMed] [Google Scholar]
- Allen A. K., Desai N. N., Neuberger A., Creeth J. M. Properties of potato lectin and the nature of its glycoprotein linkages. Biochem J. 1978 Jun 1;171(3):665–674. doi: 10.1042/bj1710665. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bhattacharyya L., Haraldsson M., Brewer C. F. Precipitation of galactose-specific lectins by complex-type oligosaccharides and glycopeptides: studies with lectins from Ricinus communis (agglutinin I), Erythrina indica, Erythrina arborescens, Abrus precatorius (agglutinin), and Glycine max (soybean). Biochemistry. 1988 Feb 9;27(3):1034–1041. doi: 10.1021/bi00403a028. [DOI] [PubMed] [Google Scholar]
- Broekaert W. F., Nsimba-Lubaki M., Peeters B., Peumans W. J. A lectin from elder (Sambucus nigra L.) bark. Biochem J. 1984 Jul 1;221(1):163–169. doi: 10.1042/bj2210163. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Edelhoch H. Spectroscopic determination of tryptophan and tyrosine in proteins. Biochemistry. 1967 Jul;6(7):1948–1954. doi: 10.1021/bi00859a010. [DOI] [PubMed] [Google Scholar]
- Etzler M. E., Borrebaeck C. Carbohydrate binding activity of a lectin-like glycoprotein from stems and leaves of Dolichos biflorus. Biochem Biophys Res Commun. 1980 Sep 16;96(1):92–97. doi: 10.1016/0006-291x(80)91185-7. [DOI] [PubMed] [Google Scholar]
- Etzler M. E., Gupta S., Borrebaeck C. Carbohydrate binding properties of th Dolichos biflorus lectin and its subunits. J Biol Chem. 1981 Mar 10;256(5):2367–2370. [PubMed] [Google Scholar]
- Faye L., Chrispeels M. J. Characterization of N-linked oligosaccharides by affinoblotting with concanavalin A-peroxidase and treatment of the blots with glycosidases. Anal Biochem. 1985 Aug 15;149(1):218–224. doi: 10.1016/0003-2697(85)90498-1. [DOI] [PubMed] [Google Scholar]
- Hanewinkel H., Glössl J., Kresse H. Biosynthesis of cathepsin B in cultured normal and I-cell fibroblasts. J Biol Chem. 1987 Sep 5;262(25):12351–12355. [PubMed] [Google Scholar]
- Harada H., Kondo M., Yanagisawa M., Sunada S. Mucin-specific bark lectin from elderberry Sambucus sieboldiana and its applications to the affinity chromatography of mucin. Anal Biochem. 1990 Sep;189(2):262–266. doi: 10.1016/0003-2697(90)90118-s. [DOI] [PubMed] [Google Scholar]
- Hasilik A., Neufeld E. F. Biosynthesis of lysosomal enzymes in fibroblasts. Synthesis as precursors of higher molecular weight. J Biol Chem. 1980 May 25;255(10):4937–4945. [PubMed] [Google Scholar]
- Horejsí V., Haskovec C., Kocourek J. Studies on lectins. XXXVIII. Isolation and characterization of the lectin from black locust bark (Robinia pseudacacia L.). Biochim Biophys Acta. 1978 Jan 25;532(1):98–104. [PubMed] [Google Scholar]
- Kaku H., Peumans W. J., Goldstein I. J. Isolation and characterization of a second lectin (SNA-II) present in elderberry (Sambucus nigra L.) bark. Arch Biochem Biophys. 1990 Mar;277(2):255–262. doi: 10.1016/0003-9861(90)90576-k. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Law I. J., Strijdom B. W. Properties of Lectins in the Root and Seed of Lotononis bainesii. Plant Physiol. 1984 Apr;74(4):773–778. doi: 10.1104/pp.74.4.773. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lehrer S. S., Joseph D. Differences in local conformation around cysteine residues in alpha alpha, alpha beta, and beta beta rabbit skeletal tropomyosin. Arch Biochem Biophys. 1987 Jul;256(1):1–9. doi: 10.1016/0003-9861(87)90419-x. [DOI] [PubMed] [Google Scholar]
- Malek-Hedayat S., Meiners S. A., Metcalf T. N., 3rd, Schindler M., Wang J. L., Ho S. C. Endogenous lectin from cultured soybean cells. Chemical characterization of the lectin of SB-1 cells. J Biol Chem. 1987 Jun 5;262(16):7825–7830. [PubMed] [Google Scholar]
- Matsudaira P. Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes. J Biol Chem. 1987 Jul 25;262(21):10035–10038. [PubMed] [Google Scholar]
- Montreuil J. Spatial conformation of glycans and glycoproteins. Biol Cell. 1984;51(2):115–131. doi: 10.1111/j.1768-322x.1984.tb00291.x. [DOI] [PubMed] [Google Scholar]
- Nguyen Q., Murphy G., Roughley P. J., Mort J. S. Degradation of proteoglycan aggregate by a cartilage metalloproteinase. Evidence for the involvement of stromelysin in the generation of link protein heterogeneity in situ. Biochem J. 1989 Apr 1;259(1):61–67. doi: 10.1042/bj2590061. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roberts D. D., Etzler M. E., Goldstein I. J. Subunit heterogeneity in the lima bean lectin. J Biol Chem. 1982 Aug 10;257(15):9198–9204. [PubMed] [Google Scholar]
- Roughley P. J., White R. J. Age-related changes in the structure of the proteoglycan subunits from human articular cartilage. J Biol Chem. 1980 Jan 10;255(1):217–224. [PubMed] [Google Scholar]
- Shibuya N., Goldstein I. J., Broekaert W. F., Nsimba-Lubaki M., Peeters B., Peumans W. J. The elderberry (Sambucus nigra L.) bark lectin recognizes the Neu5Ac(alpha 2-6)Gal/GalNAc sequence. J Biol Chem. 1987 Feb 5;262(4):1596–1601. [PubMed] [Google Scholar]
- Shibuya N., Tazaki K., Song Z. W., Tarr G. E., Goldstein I. J., Peumans W. J. A comparative study of bark lectins from three elderberry (Sambucus) species. J Biochem. 1989 Dec;106(6):1098–1103. doi: 10.1093/oxfordjournals.jbchem.a122972. [DOI] [PubMed] [Google Scholar]
- Spencer R. L., Wold F. A new convenient method for estimation of total cystine-cysteine in proteins. Anal Biochem. 1969 Oct 15;32(1):185–190. doi: 10.1016/0003-2697(69)90123-7. [DOI] [PubMed] [Google Scholar]
- Spiro R. G., Bhoyroo V. D. Structure of the O-glycosidically linked carbohydrate units of fetuin. J Biol Chem. 1974 Sep 25;249(18):5704–5717. [PubMed] [Google Scholar]
- Taatjes D. J., Roth J., Peumans W., Goldstein I. J. Elderberry bark lectin--gold techniques for the detection of Neu5Ac (alpha 2,6) Gal/GalNAc sequences: applications and limitations. Histochem J. 1988 Sep;20(9):478–490. doi: 10.1007/BF01002646. [DOI] [PubMed] [Google Scholar]
- Talbot C. F., Etzler M. E. Isolation and characterization of a protein from leaves and stems of Dolichos biflorus that cross reacts with antibodies to the seed lectin. Biochemistry. 1978 Apr 18;17(8):1474–1479. doi: 10.1021/bi00601a018. [DOI] [PubMed] [Google Scholar]
- Wantyghem J., Goulut C., Frénoy J. P., Turpin E., Goussault Y. Purification and characterization of Robinia pseudoacacia seed lectins. A re-investigation. Biochem J. 1986 Jul 15;237(2):483–489. doi: 10.1042/bj2370483. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Waxdal M. J. Isolation, characterization, and biological activities of five mitogens from pokeweed. Biochemistry. 1974 Aug 27;13(18):3671–3677. doi: 10.1021/bi00715a008. [DOI] [PubMed] [Google Scholar]