Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1991 Sep 15;278(Pt 3):667–671. doi: 10.1042/bj2780667

Purification and partial characterization of a novel lectin from elder (Sambucus nigra L.) fruit.

L Mach 1, W Scherf 1, M Ammann 1, J Poetsch 1, W Bertsch 1, L März 1, J Glössl 1
PMCID: PMC1151398  PMID: 1910334

Abstract

A previously unknown haemagglutinin, named Sambucus nigra agglutinin-III (SNA-III), has been purified from the fruit of the elder (Sambucus nigra). Whereas elder bark agglutinin I (SNA-I) is highly specific for terminal alpha 2,6-linked sialic acid residues, SNA-III displays a high affinity for oligosaccharides containing exposed N-acetylgalactosamine and galactose residues. Different N-terminal sequences and the amino acid composition distinguish the fruit lectin from elder bark agglutinin II (SNA-II), which shows a similar carbohydrate specificity. The 40-fold higher affinity of SNA-III for asialofetuin than for human asialo-alpha 1-acid glycoprotein and human asialotransferrin respectively suggests a preference for O-linked glycans. SNA-III occurs mainly as a monomeric glycoprotein, but tends to form di- and oligo-meric aggregates. This aggregation seems to mediate the multivalent interaction, leading to agglutination. SDS/PAGE revealed two major polypeptides with apparent molecular masses of 32 and 33 kDa respectively. This heterogeneity is probably a result of proteolysis in the C-terminal region. Binding to concanavalin A and susceptibility to peptide: N-glycosidase F indicated the presence of N-glycosidically linked oligosaccharides.

Full text

PDF
671

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahmed H., Gabius H. J. Purification and properties of a Ca2+-independent sialic acid-binding lectin from human placenta with preferential affinity to O-acetylsialic acids. J Biol Chem. 1989 Nov 5;264(31):18673–18678. [PubMed] [Google Scholar]
  2. Allen A. K., Desai N. N., Neuberger A., Creeth J. M. Properties of potato lectin and the nature of its glycoprotein linkages. Biochem J. 1978 Jun 1;171(3):665–674. doi: 10.1042/bj1710665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bhattacharyya L., Haraldsson M., Brewer C. F. Precipitation of galactose-specific lectins by complex-type oligosaccharides and glycopeptides: studies with lectins from Ricinus communis (agglutinin I), Erythrina indica, Erythrina arborescens, Abrus precatorius (agglutinin), and Glycine max (soybean). Biochemistry. 1988 Feb 9;27(3):1034–1041. doi: 10.1021/bi00403a028. [DOI] [PubMed] [Google Scholar]
  4. Broekaert W. F., Nsimba-Lubaki M., Peeters B., Peumans W. J. A lectin from elder (Sambucus nigra L.) bark. Biochem J. 1984 Jul 1;221(1):163–169. doi: 10.1042/bj2210163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Edelhoch H. Spectroscopic determination of tryptophan and tyrosine in proteins. Biochemistry. 1967 Jul;6(7):1948–1954. doi: 10.1021/bi00859a010. [DOI] [PubMed] [Google Scholar]
  6. Etzler M. E., Borrebaeck C. Carbohydrate binding activity of a lectin-like glycoprotein from stems and leaves of Dolichos biflorus. Biochem Biophys Res Commun. 1980 Sep 16;96(1):92–97. doi: 10.1016/0006-291x(80)91185-7. [DOI] [PubMed] [Google Scholar]
  7. Etzler M. E., Gupta S., Borrebaeck C. Carbohydrate binding properties of th Dolichos biflorus lectin and its subunits. J Biol Chem. 1981 Mar 10;256(5):2367–2370. [PubMed] [Google Scholar]
  8. Faye L., Chrispeels M. J. Characterization of N-linked oligosaccharides by affinoblotting with concanavalin A-peroxidase and treatment of the blots with glycosidases. Anal Biochem. 1985 Aug 15;149(1):218–224. doi: 10.1016/0003-2697(85)90498-1. [DOI] [PubMed] [Google Scholar]
  9. Hanewinkel H., Glössl J., Kresse H. Biosynthesis of cathepsin B in cultured normal and I-cell fibroblasts. J Biol Chem. 1987 Sep 5;262(25):12351–12355. [PubMed] [Google Scholar]
  10. Harada H., Kondo M., Yanagisawa M., Sunada S. Mucin-specific bark lectin from elderberry Sambucus sieboldiana and its applications to the affinity chromatography of mucin. Anal Biochem. 1990 Sep;189(2):262–266. doi: 10.1016/0003-2697(90)90118-s. [DOI] [PubMed] [Google Scholar]
  11. Hasilik A., Neufeld E. F. Biosynthesis of lysosomal enzymes in fibroblasts. Synthesis as precursors of higher molecular weight. J Biol Chem. 1980 May 25;255(10):4937–4945. [PubMed] [Google Scholar]
  12. Horejsí V., Haskovec C., Kocourek J. Studies on lectins. XXXVIII. Isolation and characterization of the lectin from black locust bark (Robinia pseudacacia L.). Biochim Biophys Acta. 1978 Jan 25;532(1):98–104. [PubMed] [Google Scholar]
  13. Kaku H., Peumans W. J., Goldstein I. J. Isolation and characterization of a second lectin (SNA-II) present in elderberry (Sambucus nigra L.) bark. Arch Biochem Biophys. 1990 Mar;277(2):255–262. doi: 10.1016/0003-9861(90)90576-k. [DOI] [PubMed] [Google Scholar]
  14. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  15. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  16. Law I. J., Strijdom B. W. Properties of Lectins in the Root and Seed of Lotononis bainesii. Plant Physiol. 1984 Apr;74(4):773–778. doi: 10.1104/pp.74.4.773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lehrer S. S., Joseph D. Differences in local conformation around cysteine residues in alpha alpha, alpha beta, and beta beta rabbit skeletal tropomyosin. Arch Biochem Biophys. 1987 Jul;256(1):1–9. doi: 10.1016/0003-9861(87)90419-x. [DOI] [PubMed] [Google Scholar]
  18. Malek-Hedayat S., Meiners S. A., Metcalf T. N., 3rd, Schindler M., Wang J. L., Ho S. C. Endogenous lectin from cultured soybean cells. Chemical characterization of the lectin of SB-1 cells. J Biol Chem. 1987 Jun 5;262(16):7825–7830. [PubMed] [Google Scholar]
  19. Matsudaira P. Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes. J Biol Chem. 1987 Jul 25;262(21):10035–10038. [PubMed] [Google Scholar]
  20. Montreuil J. Spatial conformation of glycans and glycoproteins. Biol Cell. 1984;51(2):115–131. doi: 10.1111/j.1768-322x.1984.tb00291.x. [DOI] [PubMed] [Google Scholar]
  21. Nguyen Q., Murphy G., Roughley P. J., Mort J. S. Degradation of proteoglycan aggregate by a cartilage metalloproteinase. Evidence for the involvement of stromelysin in the generation of link protein heterogeneity in situ. Biochem J. 1989 Apr 1;259(1):61–67. doi: 10.1042/bj2590061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Roberts D. D., Etzler M. E., Goldstein I. J. Subunit heterogeneity in the lima bean lectin. J Biol Chem. 1982 Aug 10;257(15):9198–9204. [PubMed] [Google Scholar]
  23. Roughley P. J., White R. J. Age-related changes in the structure of the proteoglycan subunits from human articular cartilage. J Biol Chem. 1980 Jan 10;255(1):217–224. [PubMed] [Google Scholar]
  24. Shibuya N., Goldstein I. J., Broekaert W. F., Nsimba-Lubaki M., Peeters B., Peumans W. J. The elderberry (Sambucus nigra L.) bark lectin recognizes the Neu5Ac(alpha 2-6)Gal/GalNAc sequence. J Biol Chem. 1987 Feb 5;262(4):1596–1601. [PubMed] [Google Scholar]
  25. Shibuya N., Tazaki K., Song Z. W., Tarr G. E., Goldstein I. J., Peumans W. J. A comparative study of bark lectins from three elderberry (Sambucus) species. J Biochem. 1989 Dec;106(6):1098–1103. doi: 10.1093/oxfordjournals.jbchem.a122972. [DOI] [PubMed] [Google Scholar]
  26. Spencer R. L., Wold F. A new convenient method for estimation of total cystine-cysteine in proteins. Anal Biochem. 1969 Oct 15;32(1):185–190. doi: 10.1016/0003-2697(69)90123-7. [DOI] [PubMed] [Google Scholar]
  27. Spiro R. G., Bhoyroo V. D. Structure of the O-glycosidically linked carbohydrate units of fetuin. J Biol Chem. 1974 Sep 25;249(18):5704–5717. [PubMed] [Google Scholar]
  28. Taatjes D. J., Roth J., Peumans W., Goldstein I. J. Elderberry bark lectin--gold techniques for the detection of Neu5Ac (alpha 2,6) Gal/GalNAc sequences: applications and limitations. Histochem J. 1988 Sep;20(9):478–490. doi: 10.1007/BF01002646. [DOI] [PubMed] [Google Scholar]
  29. Talbot C. F., Etzler M. E. Isolation and characterization of a protein from leaves and stems of Dolichos biflorus that cross reacts with antibodies to the seed lectin. Biochemistry. 1978 Apr 18;17(8):1474–1479. doi: 10.1021/bi00601a018. [DOI] [PubMed] [Google Scholar]
  30. Wantyghem J., Goulut C., Frénoy J. P., Turpin E., Goussault Y. Purification and characterization of Robinia pseudoacacia seed lectins. A re-investigation. Biochem J. 1986 Jul 15;237(2):483–489. doi: 10.1042/bj2370483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Waxdal M. J. Isolation, characterization, and biological activities of five mitogens from pokeweed. Biochemistry. 1974 Aug 27;13(18):3671–3677. doi: 10.1021/bi00715a008. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES