Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1995 Nov 15;489(Pt 1):63–72. doi: 10.1113/jphysiol.1995.sp021030

Effect of intracellular magnesium on calcium extrusion by the plasma membrane calcium pump of intact human red cells.

J E Raftos 1, V L Lew 1
PMCID: PMC1156792  PMID: 8583416

Abstract

1. The effect of varying the concentration of intracellular magnesium on the Ca(2+)-saturated Ca(2+)-extrusion rate through the Ca2+ pump (phi max) was investigated in human red blood cells with the aid of the divalent cation ionophore A23187. The aim was to characterize the [Mg2+]i dependence of the Ca2+ pump in the intact cell. 2. The initial experimental protocol consisted of applying a high ionophore concentration to obtain rapid sequential Mg2+ and [45Ca]CaCl2 equilibration, prior to measuring phi max at constant internal [MgT]i by either the Co2+ block method or by ionophore removal. With this protocol, competition between Ca2+ and Mg2+ through the ionophore prevented Ca2+ equilibration at high [Mg2+]o. To provide rapid and comparable Ca2+ loads and maintain intracellular ATP within normal levels it was necessary to separate the Mg2+ and the Ca2+ loading-extrusion stages by an intermediate ionophore and external Mg2+ removal step, and to use different metabolic substrates during Mg2+ loading (glucose) and Ca2+ loading-extrusion (inosine) periods. 3. Intracellular Co2+ was found to sustain Ca2+ extrusion by the pump at subphysiological [Mg2+]i. Ionophore removal was therefore used to estimate the [Mg2+]i dependence of the pump at levels below [MgT]i (approximately 2 mmol (340 g Hb)-1), whereas both ionophore removal and Co2+ block were used for higher [MgT]i levels. 4. [Mg2+]i was computed from measured [MgT]i using known cytoplasmic Mg(2+)-buffering data. The phi max of the Ca2+ pump increased hyperbolically with [Mg2+]i. The Michaelis parameter (K 1/2) of activation was 0.12 +/- 0.04 mmol (1 cell water)-1 (mean +/- S.E.M.). Increasing [MgT]i and [Mg2+]i to 9 mmol (340 g Hb)-1 and 2.6 mmol (1 cell water)-1, respectively, failed to cause significant inhibition of the phi max of the Ca2+ pump. 5. The results suggest that within the physiological and pathophysiological range of [Mg2+]i, from 0.3 mmol (1 cell water)-1 in the oxygenated state to 1.2 mmol (1 cell water)-1 in the deoxygenated state, the Ca(2+)-saturated Ca2+ pump remains unaffected by [Mg2+]i at normal ATP levels.

Full text

PDF
67

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bunn H. F., Ransil B. J., Chao A. The interaction between erythrocyte organic phosphates, magnesium ion, and hemoglobin. J Biol Chem. 1971 Sep 10;246(17):5273–5279. [PubMed] [Google Scholar]
  2. Caride A. J., Rega A. F., Garrahan P. J. The reaction of Mg2+ with the Ca2+-ATPase from human red cell membranes and its modification by Ca2+. Biochim Biophys Acta. 1986 Dec 16;863(2):165–177. doi: 10.1016/0005-2736(86)90256-7. [DOI] [PubMed] [Google Scholar]
  3. DUNHAM E. T., GLYNN I. M. Adenosinetriphosphatase activity and the active movements of alkali metal ions. J Physiol. 1961 Apr;156:274–293. doi: 10.1113/jphysiol.1961.sp006675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dagher G., Lew V. L. Maximal calcium extrusion capacity and stoichiometry of the human red cell calcium pump. J Physiol. 1988 Dec;407:569–586. doi: 10.1113/jphysiol.1988.sp017432. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Etzion Z., Tiffert T., Bookchin R. M., Lew V. L. Effects of deoxygenation on active and passive Ca2+ transport and on the cytoplasmic Ca2+ levels of sickle cell anemia red cells. J Clin Invest. 1993 Nov;92(5):2489–2498. doi: 10.1172/JCI116857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ferreira H. G., Lew V. L. Use of ionophore A23187 to measure cytoplasmic Ca buffering and activation of the Ca pump by internal Ca. Nature. 1976 Jan 1;259(5538):47–49. doi: 10.1038/259047a0. [DOI] [PubMed] [Google Scholar]
  7. Flatman P. W., Lew V. L. Magnesium buffering in intact human red blood cells measured using the ionophore A23187. J Physiol. 1980 Aug;305:13–30. doi: 10.1113/jphysiol.1980.sp013346. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Flatman P. W., Lew V. L. The magnesium dependence of sodium-pump-mediated sodium-potassium and sodium-sodium exchange in intact human red cells. J Physiol. 1981 Jun;315:421–446. doi: 10.1113/jphysiol.1981.sp013756. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Flatman P. W. The effect of buffer composition and deoxygenation on the concentration of ionized magnesium inside human red blood cells. J Physiol. 1980 Mar;300:19–30. doi: 10.1113/jphysiol.1980.sp013148. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. García-Sancho J., Lew V. L. Detection and separation of human red cells with different calcium contents following uniform calcium permeabilization. J Physiol. 1988 Dec;407:505–522. doi: 10.1113/jphysiol.1988.sp017428. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. García-Sancho J., Lew V. L. Heterogeneous calcium and adenosine triphosphate distribution in calcium-permeabilized human red cells. J Physiol. 1988 Dec;407:523–539. doi: 10.1113/jphysiol.1988.sp017429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Garrahan P. J., Rega A. F. Activation of partial reactions of the Ca2+-ATPase from human red cells by Mg2+ and ATP. Biochim Biophys Acta. 1978 Oct 19;513(1):59–65. doi: 10.1016/0005-2736(78)90111-6. [DOI] [PubMed] [Google Scholar]
  13. Graf E., Penniston J. T. CaATP: the substrate, at low ATP concentrations, of Ca2+ ATPase from human erythrocyte membranes. J Biol Chem. 1981 Feb 25;256(4):1587–1592. [PubMed] [Google Scholar]
  14. Lew V. L., Bookchin R. M. Volume, pH, and ion-content regulation in human red cells: analysis of transient behavior with an integrated model. J Membr Biol. 1986;92(1):57–74. doi: 10.1007/BF01869016. [DOI] [PubMed] [Google Scholar]
  15. Lew V. L., García-Sancho J. Measurement and control of intracellular calcium in intact red cells. Methods Enzymol. 1989;173:100–112. doi: 10.1016/s0076-6879(89)73008-1. [DOI] [PubMed] [Google Scholar]
  16. Ortiz O. E., Lew V. L., Bookchin R. M. Deoxygenation permeabilizes sickle cell anaemia red cells to magnesium and reverses its gradient in the dense cells. J Physiol. 1990 Aug;427:211–226. doi: 10.1113/jphysiol.1990.sp018168. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Pereira A. C., Samellas D., Tiffert T., Lew V. L. Inhibition of the calcium pump by high cytosolic Ca2+ in intact human red blood cells. J Physiol. 1993 Feb;461:63–73. doi: 10.1113/jphysiol.1993.sp019501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Richards D. E. Occlusion of cobalt ions within the phosphorylated forms of the Na+-K+ pump isolated from dog kidney. J Physiol. 1988 Oct;404:497–514. doi: 10.1113/jphysiol.1988.sp017302. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Schatzmann H. J., Vincenzi F. F. Calcium movements across the membrane of human red cells. J Physiol. 1969 Apr;201(2):369–395. doi: 10.1113/jphysiol.1969.sp008761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Tiffert T., Etzion Z., Bookchin R. M., Lew V. L. Effects of deoxygenation on active and passive Ca2+ transport and cytoplasmic Ca2+ buffering in normal human red cells. J Physiol. 1993 May;464:529–544. doi: 10.1113/jphysiol.1993.sp019649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Tiffert T., Garcia-Sancho J., Lew V. L. Irreversible ATP depletion caused by low concentrations of formaldehyde and of calcium-chelator esters in intact human red cells. Biochim Biophys Acta. 1984 Jun 13;773(1):143–156. doi: 10.1016/0005-2736(84)90559-5. [DOI] [PubMed] [Google Scholar]
  22. Wang K. K., Villalobo A., Roufogalis B. D. The plasma membrane calcium pump: a multiregulated transporter. Trends Cell Biol. 1992 Feb;2(2):46–52. doi: 10.1016/0962-8924(92)90162-g. [DOI] [PubMed] [Google Scholar]
  23. Wu L., Hinds T. R., Vincenzi F. F. Assay of the Ca pump ATPase activity of intact red blood cells. Biochim Biophys Acta. 1992 Apr 29;1106(1):56–62. doi: 10.1016/0005-2736(92)90221-7. [DOI] [PubMed] [Google Scholar]
  24. Xu Y. H., Roufogalis B. D. Asymmetric effects of divalent cations and protons on active Ca2+ efflux and Ca2+-ATPase in intact red blood cells. J Membr Biol. 1988 Oct;105(2):155–164. doi: 10.1007/BF02009168. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES