Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1997 Dec 15;505(Pt 3):605–616. doi: 10.1111/j.1469-7793.1997.605ba.x

Calcium action potentials restricted to distal apical dendrites of rat neocortical pyramidal neurons.

J Schiller 1, Y Schiller 1, G Stuart 1, B Sakmann 1
PMCID: PMC1160039  PMID: 9457639

Abstract

1. Simultaneous whole-cell voltage and Ca2+ fluorescence measurements were made from the distal apical dendrites and the soma of thick tufted pyramidal neurons in layer 5 of 4-week-old (P28-32) rat neocortex slices to investigate whether activation of distal synaptic inputs can initiate regenerative responses in dendrites. 2. Dual whole-cell voltage recordings from the distal apical trunk and primary tuft branches (540-940 microns distal to the soma) showed that distal synaptic stimulation (upper layer 2) evoking a subthreshold depolarization at the soma could initiate regenerative potentials in distal branches of the apical tuft which were either graded or all-or-none. These regenerative potentials did not propagate actively to the soma and axon. 3. Calcium fluorescence measurements along the apical dendrites indicated that the regenerative potentials were associated with a transient increase in the concentration of intracellular free calcium ([Ca2+]i) restricted to distal dendrites. 4. Cadmium added to the bath solution blocked both the all-or-more dendritic regenerative potentials and local dendritic [Ca2+]i transients evoked by distal dendritic current injection. Thus, the regenerative potentials in distal dendrites represent local Ca2+ action potentials. 5. Initiation of distal Ca2+ action potentials by a synaptic stimulus required coactivation of AMPA- and NMDA-type glutamate receptor channels. 6. It is concluded that in neocortical layer 5 pyramidal neurons of P28-32 animals glutamatergic synaptic inputs to the distal apical dendrites can be amplified via local Ca2+ action potentials which do not reach threshold for axonal AP initiation. As amplification of distal excitatory synaptic input is associated with a localized increase in [Ca2+]i these Ca2+ action potentials could control the synaptic efficacy of the distal cortico-cortical inputs to layer 5 pyramidal neurons.

Full text

PDF
608

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amitai Y., Friedman A., Connors B. W., Gutnick M. J. Regenerative activity in apical dendrites of pyramidal cells in neocortex. Cereb Cortex. 1993 Jan-Feb;3(1):26–38. doi: 10.1093/cercor/3.1.26. [DOI] [PubMed] [Google Scholar]
  2. Andreasen M., Lambert J. D. Regenerative properties of pyramidal cell dendrites in area CA1 of the rat hippocampus. J Physiol. 1995 Mar 1;483(Pt 2):421–441. doi: 10.1113/jphysiol.1995.sp020595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bliss T. V., Collingridge G. L. A synaptic model of memory: long-term potentiation in the hippocampus. Nature. 1993 Jan 7;361(6407):31–39. doi: 10.1038/361031a0. [DOI] [PubMed] [Google Scholar]
  4. Cauller L. J., Connors B. W. Synaptic physiology of horizontal afferents to layer I in slices of rat SI neocortex. J Neurosci. 1994 Feb;14(2):751–762. doi: 10.1523/JNEUROSCI.14-02-00751.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Eilers J., Augustine G. J., Konnerth A. Subthreshold synaptic Ca2+ signalling in fine dendrites and spines of cerebellar Purkinje neurons. Nature. 1995 Jan 12;373(6510):155–158. doi: 10.1038/373155a0. [DOI] [PubMed] [Google Scholar]
  6. Goldstein S. S., Rall W. Changes of action potential shape and velocity for changing core conductor geometry. Biophys J. 1974 Oct;14(10):731–757. doi: 10.1016/S0006-3495(74)85947-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hirsch J. A., Alonso J. M., Reid R. C. Visually evoked calcium action potentials in cat striate cortex. Nature. 1995 Dec 7;378(6557):612–616. doi: 10.1038/378612a0. [DOI] [PubMed] [Google Scholar]
  8. Johnston D., Magee J. C., Colbert C. M., Cristie B. R. Active properties of neuronal dendrites. Annu Rev Neurosci. 1996;19:165–186. doi: 10.1146/annurev.ne.19.030196.001121. [DOI] [PubMed] [Google Scholar]
  9. Kim H. G., Beierlein M., Connors B. W. Inhibitory control of excitable dendrites in neocortex. J Neurophysiol. 1995 Oct;74(4):1810–1814. doi: 10.1152/jn.1995.74.4.1810. [DOI] [PubMed] [Google Scholar]
  10. Kim H. G., Connors B. W. Apical dendrites of the neocortex: correlation between sodium- and calcium-dependent spiking and pyramidal cell morphology. J Neurosci. 1993 Dec;13(12):5301–5311. doi: 10.1523/JNEUROSCI.13-12-05301.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lev-Ram V., Miyakawa H., Lasser-Ross N., Ross W. N. Calcium transients in cerebellar Purkinje neurons evoked by intracellular stimulation. J Neurophysiol. 1992 Oct;68(4):1167–1177. doi: 10.1152/jn.1992.68.4.1167. [DOI] [PubMed] [Google Scholar]
  12. Llinás R., Sugimori M. Electrophysiological properties of in vitro Purkinje cell somata in mammalian cerebellar slices. J Physiol. 1980 Aug;305:171–195. doi: 10.1113/jphysiol.1980.sp013357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Magee J. C., Johnston D. Synaptic activation of voltage-gated channels in the dendrites of hippocampal pyramidal neurons. Science. 1995 Apr 14;268(5208):301–304. doi: 10.1126/science.7716525. [DOI] [PubMed] [Google Scholar]
  14. Markram H., Lübke J., Frotscher M., Roth A., Sakmann B. Physiology and anatomy of synaptic connections between thick tufted pyramidal neurones in the developing rat neocortex. J Physiol. 1997 Apr 15;500(Pt 2):409–440. doi: 10.1113/jphysiol.1997.sp022031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Miles R., Tóth K., Gulyás A. I., Hájos N., Freund T. F. Differences between somatic and dendritic inhibition in the hippocampus. Neuron. 1996 Apr;16(4):815–823. doi: 10.1016/s0896-6273(00)80101-4. [DOI] [PubMed] [Google Scholar]
  16. Regehr W., Kehoe J. S., Ascher P., Armstrong C. Synaptically triggered action potentials in dendrites. Neuron. 1993 Jul;11(1):145–151. doi: 10.1016/0896-6273(93)90278-y. [DOI] [PubMed] [Google Scholar]
  17. Reuveni I., Friedman A., Amitai Y., Gutnick M. J. Stepwise repolarization from Ca2+ plateaus in neocortical pyramidal cells: evidence for nonhomogeneous distribution of HVA Ca2+ channels in dendrites. J Neurosci. 1993 Nov;13(11):4609–4621. doi: 10.1523/JNEUROSCI.13-11-04609.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Schiller J., Helmchen F., Sakmann B. Spatial profile of dendritic calcium transients evoked by action potentials in rat neocortical pyramidal neurones. J Physiol. 1995 Sep 15;487(Pt 3):583–600. doi: 10.1113/jphysiol.1995.sp020902. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Shepherd G. M., Brayton R. K. Logic operations are properties of computer-simulated interactions between excitable dendritic spines. Neuroscience. 1987 Apr;21(1):151–165. doi: 10.1016/0306-4522(87)90329-0. [DOI] [PubMed] [Google Scholar]
  20. Spruston N., Schiller Y., Stuart G., Sakmann B. Activity-dependent action potential invasion and calcium influx into hippocampal CA1 dendrites. Science. 1995 Apr 14;268(5208):297–300. doi: 10.1126/science.7716524. [DOI] [PubMed] [Google Scholar]
  21. Stuart G. J., Dodt H. U., Sakmann B. Patch-clamp recordings from the soma and dendrites of neurons in brain slices using infrared video microscopy. Pflugers Arch. 1993 Jun;423(5-6):511–518. doi: 10.1007/BF00374949. [DOI] [PubMed] [Google Scholar]
  22. Stuart G. J., Sakmann B. Active propagation of somatic action potentials into neocortical pyramidal cell dendrites. Nature. 1994 Jan 6;367(6458):69–72. doi: 10.1038/367069a0. [DOI] [PubMed] [Google Scholar]
  23. Stuart G., Sakmann B. Amplification of EPSPs by axosomatic sodium channels in neocortical pyramidal neurons. Neuron. 1995 Nov;15(5):1065–1076. doi: 10.1016/0896-6273(95)90095-0. [DOI] [PubMed] [Google Scholar]
  24. Stuart G., Schiller J., Sakmann B. Action potential initiation and propagation in rat neocortical pyramidal neurons. J Physiol. 1997 Dec 15;505(Pt 3):617–632. doi: 10.1111/j.1469-7793.1997.617ba.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Svoboda K., Denk W., Kleinfeld D., Tank D. W. In vivo dendritic calcium dynamics in neocortical pyramidal neurons. Nature. 1997 Jan 9;385(6612):161–165. doi: 10.1038/385161a0. [DOI] [PubMed] [Google Scholar]
  26. Tank D. W., Sugimori M., Connor J. A., Llinás R. R. Spatially resolved calcium dynamics of mammalian Purkinje cells in cerebellar slice. Science. 1988 Nov 4;242(4879):773–777. doi: 10.1126/science.2847315. [DOI] [PubMed] [Google Scholar]
  27. Turner R. W., Meyers D. E., Richardson T. L., Barker J. L. The site for initiation of action potential discharge over the somatodendritic axis of rat hippocampal CA1 pyramidal neurons. J Neurosci. 1991 Jul;11(7):2270–2280. doi: 10.1523/JNEUROSCI.11-07-02270.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Wong R. K., Prince D. A., Basbaum A. I. Intradendritic recordings from hippocampal neurons. Proc Natl Acad Sci U S A. 1979 Feb;76(2):986–990. doi: 10.1073/pnas.76.2.986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Yuste R., Gutnick M. J., Saar D., Delaney K. R., Tank D. W. Ca2+ accumulations in dendrites of neocortical pyramidal neurons: an apical band and evidence for two functional compartments. Neuron. 1994 Jul;13(1):23–43. doi: 10.1016/0896-6273(94)90457-x. [DOI] [PubMed] [Google Scholar]
  30. Zeki S., Shipp S. The functional logic of cortical connections. Nature. 1988 Sep 22;335(6188):311–317. doi: 10.1038/335311a0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES