Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1979 Aug 15;182(2):295–300. doi: 10.1042/bj1820295

Transport of glutamine by rat kidney brush-border membrane vesicles.

N McFarlane-Anderson, G A Alleyne
PMCID: PMC1161307  PMID: 41516

Abstract

Transport of glutamine by brush-border vesicles prepared from the renal cortex was studied. The transport system had both Na+-dependent and Na+-independent components.The presence of Na+ in the incubation resulted in an 'overshoot' at 30s at which time the rates of transport were approx. 8 times the values obtained in the absence of Na+. Variation of the glutamine concentration showed that the system obeyed Michaelis-Menten kinetics with Km and Vmax. values for the Na+-dependent system of 0.86 mM and 9.6 nmol/min per mg of protein respectively. Vesicles obtained from chronically acidotic rats showed similar kinetic characteristics. The Km and Vmax. values for the Na+-dependent system were 0.76 mM and 9.6 nmol/min per mg of protein respectively. There was increased uptake of glutamine by vesicles from acidotic rats and this increase was associated with increased activity of gamma-glutamyltransferase in these preparations. Vesicles from acidotic rats, however, showed no increase in glucose transport and no increase in the activity of maltase, another brush-border enzyme.

Full text

PDF
299

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alleyne G. A., Roobol A. Regulation of renal cortex ammoniagenesis. I. Stimulation of renal cortex ammoniagenesis in vitro by plasma isolated from acutely acidotic rats. J Clin Invest. 1974 Jan;53(1):117–121. doi: 10.1172/JCI107528. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aronson P. S., Sacktor B. The Na+ gradient-dependent transport of D-glucose in renal brush border membranes. J Biol Chem. 1975 Aug 10;250(15):6032–6039. [PubMed] [Google Scholar]
  3. Curthoys N. P., Lowry O. H. The distribution of glutaminase isoenzymes in the various structures of the nephron in normal, acidotic, and alkalotic rat kidney. J Biol Chem. 1973 Jan 10;248(1):162–168. [PubMed] [Google Scholar]
  4. Elce J. S., Broxmeyer B. Gamma-glutamyltransferase of rat kidney. Simultaneous assay of the hydrolysis and transfer reactions with (glutamate-14C)glutathione. Biochem J. 1976 Feb 1;153(2):223–232. doi: 10.1042/bj1530223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Evers J., Murer H., Kinne R. Phenylalanine uptake in isolated renal brush border vesicles. Biochim Biophys Acta. 1976 Apr 5;426(4):598–615. doi: 10.1016/0005-2736(76)90124-3. [DOI] [PubMed] [Google Scholar]
  6. Fass S. J., Hammerman M. R., Sacktor B. Transport of amino acids in renal brush border membrane vesicles. Uptake of the neutral amino acid L-alanine. J Biol Chem. 1977 Jan 25;252(2):583–590. [PubMed] [Google Scholar]
  7. Fricke U. Tritosol: a new scintillation cocktail based on Triton X-100. Anal Biochem. 1975 Feb;63(2):555–558. doi: 10.1016/0003-2697(75)90379-6. [DOI] [PubMed] [Google Scholar]
  8. Hammerman M. R., Sacktor B. Transport of amino acids in renal brush border membrane vesicles. Uptake of L-proline. J Biol Chem. 1977 Jan 25;252(2):591–595. [PubMed] [Google Scholar]
  9. Kamm D. E., Strope G. L. The effects of acidosis and alkalosis on the metabolism of glutamine and glutamate in renal cortex slices. J Clin Invest. 1972 May;51(5):1251–1263. doi: 10.1172/JCI106920. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  11. McFarlane Anderson N., Alleyne G. A. The effect of metabolic acidosis on gamma-glutamyltranspeptidase activity in the rat kidney. FEBS Lett. 1977 Jul 1;79(1):51–53. doi: 10.1016/0014-5793(77)80348-7. [DOI] [PubMed] [Google Scholar]
  12. Meister A. Function of glutathione in kidney via the gamma-glutamyl cycle. Med Clin North Am. 1975 May;59(3):649–666. doi: 10.1016/s0025-7125(16)32015-6. [DOI] [PubMed] [Google Scholar]
  13. Novogrodsky A., Tate S. S., Meister A. Uptake and utilization of L-glutamine by human lymphoid cells; relationship to gamma-glutamyl transpeptidase activity. Biochem Biophys Res Commun. 1977 Sep 9;78(1):222–229. doi: 10.1016/0006-291x(77)91243-8. [DOI] [PubMed] [Google Scholar]
  14. Prusiner S., Doak C. W., Kirk G. A novel mechanism for group translocation: substrate-product reutilization by gamma-glutamyl transpeptidase in peptide and amino acid transport. J Cell Physiol. 1976 Dec;89(4):853–863. doi: 10.1002/jcp.1040890453. [DOI] [PubMed] [Google Scholar]
  15. Sigrist-Nelson K., Murer H., Hopfer U. Active alanine transport in isolated brush border membranes. J Biol Chem. 1975 Jul 25;250(14):5674–5680. [PubMed] [Google Scholar]
  16. Tate S. S., Meister A. Interaction of gamma-glutamyl transpeptidase with amino acids, dipeptides, and derivatives and analogs of glutathione. J Biol Chem. 1974 Dec 10;249(23):7593–7602. [PubMed] [Google Scholar]
  17. Tate S. S., Meister A. Stimulation of the hydrolytic activity and decrease of the transpeptidase activity of gamma-glutamyl transpeptidase by maleate; identity of a rat kidney maleate-stimulated glutaminase and gamma-glutamyl transpeptidase. Proc Natl Acad Sci U S A. 1974 Sep;71(9):3329–3333. doi: 10.1073/pnas.71.9.3329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Tietze F. Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues. Anal Biochem. 1969 Mar;27(3):502–522. doi: 10.1016/0003-2697(69)90064-5. [DOI] [PubMed] [Google Scholar]
  19. Turner R. J., Silverman M. Sugar uptake into brush border vesicles from normal human kidney. Proc Natl Acad Sci U S A. 1977 Jul;74(7):2825–2829. doi: 10.1073/pnas.74.7.2825. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Welbourne T. C. Mechanism of renal ammonia production adaptation to chronic acidosis. Med Clin North Am. 1975 May;59(3):629–648. doi: 10.1016/s0025-7125(16)32014-4. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES