Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1981 Mar 15;194(3):707–711. doi: 10.1042/bj1940707

Intracellular ionic changes in normal and transformed human fibroblasts after extracellular Ca2+ deprivation.

B J Hazelton, J T Tupper
PMCID: PMC1162805  PMID: 7306019

Abstract

The lowering of extracellular Ca2+ concentration in the growth medium reversibly blocks normal, but not SV40-transformed WI38 diploid fibroblasts in the early G1/G0 phase of the cell cycle. This growth response is characterized by specific changes in ionic content and transport. Ca2+ deprivation (0.03 mM) has little effect on the K+ content of either normal or transformed cells. Na+ content, however, is increased nearly 2-fold in the normal cells. This increase is presumably due to a 3-fold increase in unidirectional Na+ influx in Ca2+-deprived cells. The increased intracellular Na+ also gives rise to a nearly 3-fold enhancement of the active (ouabain-sensitive) Na+ efflux. Ca2+ deprivation causes only slight increases in Na+ influx, ouabain-sensitive Na+ efflux and intracellular Na+ in the transformed cell. In contrast, the transformed cells lose nearly 60% of their intracellular Ca2+ on deprivation, whereas normal WI38 cells lose only 10%. The data suggest that the growth arrest exhibited by the normal cell but not the transformed cell may be related to different membrane-transport and permeability changes in response to Ca2+ deprivation.

Full text

PDF
711

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Balk S. D., Whitfield J. F., Youdale T., Braun A. C. Roles of calcium, serum, plasma, and folic acid in the control of proliferation of normal and Rous sarcoma virus-infected chicken fibroblasts. Proc Natl Acad Sci U S A. 1973 Mar;70(3):675–679. doi: 10.1073/pnas.70.3.675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Banerjee S. P., Cuatrecasas P., Snyder S. H. Nerve growth factor receptor binding. Influence of enzymes, ions, and protein reagents. J Biol Chem. 1975 Feb 25;250(4):1427–1433. [PubMed] [Google Scholar]
  3. Borle A. B. Calcium metabolism in HeLa cells and the effects of parathyroid hormone. J Cell Biol. 1968 Mar;36(3):567–582. doi: 10.1083/jcb.36.3.567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Boynton A. L., Whitfield J. F., Isaacs R. J., Tremblay R. The control of human WI-38 cell proliferation by extracellular calcium and its elimination by SV-40 virus-induced proliferative transformation. J Cell Physiol. 1977 Aug;92(2):241–247. doi: 10.1002/jcp.1040920212. [DOI] [PubMed] [Google Scholar]
  5. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  6. Carafoli E., Crompton M. The regulation of intracellular calcium by mitochondria. Ann N Y Acad Sci. 1978 Apr 28;307:269–284. doi: 10.1111/j.1749-6632.1978.tb41957.x. [DOI] [PubMed] [Google Scholar]
  7. Desai K. S., Zinman B., Steiner G., Hollenberg C. H. Effect of calcium on [125I]insulin binding to rat adipocytes. Can J Biochem. 1978 Sep;56(9):843–848. doi: 10.1139/o78-129. [DOI] [PubMed] [Google Scholar]
  8. EAGLE H. Propagation in a fluid medium of a human epidermoid carcinoma, strain KB. Proc Soc Exp Biol Med. 1955 Jul;89(3):362–364. doi: 10.3181/00379727-89-21811. [DOI] [PubMed] [Google Scholar]
  9. GARDOS G. The function of calcium in the potassium permeability of human erythrocytes. Biochim Biophys Acta. 1958 Dec;30(3):653–654. doi: 10.1016/0006-3002(58)90124-0. [DOI] [PubMed] [Google Scholar]
  10. Garay R. P., Garrahan P. J. The interaction of sodium and potassium with the sodium pump in red cells. J Physiol. 1973 Jun;231(2):297–325. doi: 10.1113/jphysiol.1973.sp010234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gilbert I. G. The effects of divalent cations on the ionic permeability of cell membranes in normal and tumour tissues. Eur J Cancer. 1972 Feb;8(1):99–105. doi: 10.1016/0014-2964(72)90089-8. [DOI] [PubMed] [Google Scholar]
  12. Hazelton B. J., Tupper J. T. Calcium transport and exchange in mouse 3T3 and SV40-3T3 cells. J Cell Biol. 1979 Jun;81(3):538–542. doi: 10.1083/jcb.81.3.538. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hazelton B., Mitchell B., Tupper J. Calcium, magnesium, and growth control in the WI-38 human fibroblast cell. J Cell Biol. 1979 Nov;83(2 Pt 1):487–498. doi: 10.1083/jcb.83.2.487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kolb H. A., Adam G. Regulation of ion permeabilities of isolated rat liver cells by external calcium concentration and temperature. J Membr Biol. 1976 Mar 18;26(2-3):121–151. doi: 10.1007/BF01868870. [DOI] [PubMed] [Google Scholar]
  15. Ledbetter M. L., Lubin M. Control of protein synthesis in human fibroblasts by intracellular potassium. Exp Cell Res. 1977 Mar 15;105(2):223–236. doi: 10.1016/0014-4827(77)90120-3. [DOI] [PubMed] [Google Scholar]
  16. MORRILL G. A., KABACK H. R., ROBBINS E. EFFECT OF CALCIUM ON INTRACELLULAR SODIUM AND POTASSIUM CONCENTRATIONS IN PLANT AND ANIMAL CELLS. Nature. 1964 Nov 14;204:641–642. doi: 10.1038/204641a0. [DOI] [PubMed] [Google Scholar]
  17. Marcum J. M., Dedman J. R., Brinkley B. R., Means A. R. Control of microtubule assembly-disassembly by calcium-dependent regulator protein. Proc Natl Acad Sci U S A. 1978 Aug;75(8):3771–3775. doi: 10.1073/pnas.75.8.3771. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. McKeehan W. L., Ham R. G. Calcium and magnesium ions and the regulation of multiplication in normal and transformed cells. Nature. 1978 Oct 26;275(5682):756–758. doi: 10.1038/275756a0. [DOI] [PubMed] [Google Scholar]
  19. Morrill G. A., Robbins E. The role of calcium in the regulation of the steady-state levels of sodium and potassium in the HeLa cell. J Gen Physiol. 1967 Mar;50(4):781–792. doi: 10.1085/jgp.50.4.781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Moscatelli D., Sanui H., Rubin A. H. Effects of depletion of K+, Na+, or Ca2+ on DNA synthesis and cell cation content in chick embryo fibroblasts. J Cell Physiol. 1979 Oct;101(1):117–128. doi: 10.1002/jcp.1041010114. [DOI] [PubMed] [Google Scholar]
  21. Rubin A. H., Terasaki M., Sanui H. Magnesium reverses inhibitory effects of calcium deprivation on coordinate response of 3T3 cells to serum. Proc Natl Acad Sci U S A. 1978 Sep;75(9):4379–4383. doi: 10.1073/pnas.75.9.4379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Sanui H., Rubin A. H. Measurement of total, intracellular and surface bound cations in animal cells grown in culture. J Cell Physiol. 1979 Aug;100(2):215–226. doi: 10.1002/jcp.1041000203. [DOI] [PubMed] [Google Scholar]
  23. Sanui H., Rubin A. H. Membrane bound and cellular cationic changes associated with insulin stimulation of cultured cells. J Cell Physiol. 1978 Sep;96(3):265–278. doi: 10.1002/jcp.1040960302. [DOI] [PubMed] [Google Scholar]
  24. Sanui H., Rubin H. Correlated effects of external magnesium on cation content and DNA synthesis in culture chicken embryo fibroblasts. J Cell Physiol. 1977 Jul;92(1):23–31. doi: 10.1002/jcp.1040920104. [DOI] [PubMed] [Google Scholar]
  25. Smith T. C., Vernon K. D. Correlation of the effect of Ca+2 on Na+ and K+ permeability and membrane potential of Ehrlich ascites tumor cells. J Cell Physiol. 1979 Feb;98(2):359–369. doi: 10.1002/jcp.1040980212. [DOI] [PubMed] [Google Scholar]
  26. Tupper J. T., Del Rosso M., Hazelton B., Zorgniotti F. Serum-stimulated changes in calcium transport and distribution in mouse 3T3 cells and their modification by dibutyryl cyclic AMP. J Cell Physiol. 1978 Apr;95(1):71–84. doi: 10.1002/jcp.1040950110. [DOI] [PubMed] [Google Scholar]
  27. Tupper J. T., Kaufman L., Bodine P. V. Related effects of calcium and serum on the G1 phase of the human W138 fibroblast. J Cell Physiol. 1980 Jul;104(1):97–103. doi: 10.1002/jcp.1041040113. [DOI] [PubMed] [Google Scholar]
  28. Tupper J. T., Zografos L. Effect of imposed serum deprivation on growth of the mouse 3T3 cell. Dissociation from changes in potassium ion transport as measured from [86Rb)rubidium ion uptake. Biochem J. 1978 Sep 15;174(3):1063–1065. doi: 10.1042/bj1741063. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Tupper J. T., Zorgniotti F. Calcium content and distribution as a function of growth and transformation in the mouse 3T3 cell. J Cell Biol. 1977 Oct;75(1):12–22. doi: 10.1083/jcb.75.1.12. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES