Abstract
X-ray-diffraction patterns of hyaluronate fibres from a variety of sources were obtained. Sodium hyaluronate gives well-defined patterns which index on a hexagonal unit cell with dimensions a=1.17±nm and a fibre repeat-distance of 2.85±0.03nm. A further form of sodium hyaluronate is produced by annealing at 60°C in 75% relative humidity. This stable state indexes on a hexagonal unit cell of unchanged fibre repeat-distance but with a=1.87nm. The chain conformation is a threefold helix. Analysis of these diffraction patterns led to two tentative structures for sodium hyaluronate, involving different packing of the polysaccharide chains. The significance of side-chain interaction is discussed. Hyaluronic acid produces an X-ray pattern different from that obtained with the sodium salt. The fibre repeat-distance is 1.96±0.02nm and the unit cell appears to be monoclinic. The chain conformation is a twofold helix and conformational change between free acid and monovalent salt is discussed. These findings, together with model-building experiments, are interpreted as indicating a highly ordered structure, and the physical properties of hyaluronate solutions with regard to molecular shape and polyelectrolyte behaviour are rationalized.
Full text
PDF![1255](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57ff/1174013/2079270c83cd/biochemj00625-0266.png)
![1256](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57ff/1174013/0673a43b1ebc/biochemj00625-0267.png)
![1257](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57ff/1174013/e7799ed0c170/biochemj00625-0268.png)
![1258](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57ff/1174013/ae685889c5b3/biochemj00625-0269.png)
![1258-1](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57ff/1174013/45aef3ff880f/biochemj00625-0270.png)
![1259](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57ff/1174013/a87da9678e87/biochemj00625-0271.png)
![1260](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57ff/1174013/4955cd02a2da/biochemj00625-0272.png)
![1261](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57ff/1174013/8e96fa3b310b/biochemj00625-0273.png)
![1262](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57ff/1174013/cf5f87beb703/biochemj00625-0274.png)
![1263](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57ff/1174013/db0e0181ba43/biochemj00625-0275.png)
Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson N. S., Campbell J. W., Harding M. M., Rees D. A., Samuel J. W. X-ray diffraction studies of polysaccharide sulphates: double helix models for k- and l-carrageenans. J Mol Biol. 1969 Oct 14;45(1):85–99. doi: 10.1016/0022-2836(69)90211-3. [DOI] [PubMed] [Google Scholar]
- Atkins E. D., Mackie W., Smolko E. E. Crystalline structures of alginic acids. Nature. 1970 Feb 14;225(5233):626–628. doi: 10.1038/225626a0. [DOI] [PubMed] [Google Scholar]
- Atkins E. D., Sheehan J. K. Structure for hyaluronic acid. Nat New Biol. 1972 Feb 23;235(60):253–254. doi: 10.1038/newbio235253a0. [DOI] [PubMed] [Google Scholar]
- BITTER T., MUIR H. M. A modified uronic acid carbazole reaction. Anal Biochem. 1962 Oct;4:330–334. doi: 10.1016/0003-2697(62)90095-7. [DOI] [PubMed] [Google Scholar]
- Blackwell J. Structure of beta-chitin or parallel chain systems of poly-beta-(1-4)-N-acetyl-D-glucosamine. Biopolymers. 1969;7(3):281–298. doi: 10.1002/bip.1969.360070302. [DOI] [PubMed] [Google Scholar]
- CARLSTROM D. The crystal structure of alpha-chitin (poly-N-acetyl-D-glucosamine). J Biophys Biochem Cytol. 1957 Sep 25;3(5):669–683. doi: 10.1083/jcb.3.5.669. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fessler J. H., Fessler L. I. Electron microscopic visualization of the polysaccharide hyaluronic acid. Proc Natl Acad Sci U S A. 1966 Jul;56(1):141–147. doi: 10.1073/pnas.56.1.141. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GOOD T. A., BESSMAN S. P. DETERMINATION OF GLUCOSAMINE AND GALACTOSAMINE USING BORATE BUFFERS FOR MODIFICATION OF THE ELSON-MORGAN AND MORGAN-ELSON REACTIONS. Anal Biochem. 1964 Nov;9:253–262. doi: 10.1016/0003-2697(64)90183-6. [DOI] [PubMed] [Google Scholar]
- Gibbs D. A., Merrill E. W., Smith K. A., Balazs E. A. Rheology of hyaluronic acid. Biopolymers. 1968 Jun;6(6):777–791. doi: 10.1002/bip.1968.360060603. [DOI] [PubMed] [Google Scholar]
- Nieduszynski I., Marchessault R. H. Structure of beta-D-(1-->4')xylan hydrate. Nature. 1971 Jul 2;232(5305):46–47. doi: 10.1038/232046a0. [DOI] [PubMed] [Google Scholar]
- SYLVEN B., AMBROSE E. J. Birefingent fibres of hyaluronic acid. Biochim Biophys Acta. 1955 Dec;18(4):587–587. doi: 10.1016/0006-3002(55)90164-5. [DOI] [PubMed] [Google Scholar]