Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1997 Aug;73(2):770–778. doi: 10.1016/S0006-3495(97)78109-8

Intrinsic rectification of ion flux in alamethicin channels: studies with an alamethicin dimer.

G A Woolley 1, P C Biggin 1, A Schultz 1, L Lien 1, D C Jaikaran 1, J Breed 1, K Crowhurst 1, M S Sansom 1
PMCID: PMC1180973  PMID: 9251793

Abstract

Covalent dimers of alamethicin form conducting structures with gating properties that permit measurement of current-voltage (I-V) relationships during the lifetime of a single channel. These I-V curves demonstrate that the alamethicin channel is a rectifier that passes current preferentially, with voltages of the same sign as that of the voltage that induced opening of the channel. The degree of rectification depends on the salt concentration; single-channel I-V relationships become almost linear in 3 M potassium chloride. These properties may be qualitatively understood by using Poisson-Nernst-Planck theory and a modeled structure of the alamethicin pore.

Full text

PDF
778

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barranger-Mathys M., Cafiso D. S. Membrane structure of voltage-gated channel forming peptides by site-directed spin-labeling. Biochemistry. 1996 Jan 16;35(2):498–505. doi: 10.1021/bi951985d. [DOI] [PubMed] [Google Scholar]
  2. Bek S., Jakobsson E. Brownian dynamics study of a multiply-occupied cation channel: application to understanding permeation in potassium channels. Biophys J. 1994 Apr;66(4):1028–1038. doi: 10.1016/S0006-3495(94)80884-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Biggin P. C., Breed J., Son H. S., Sansom M. S. Simulation studies of alamethicin-bilayer interactions. Biophys J. 1997 Feb;72(2 Pt 1):627–636. doi: 10.1016/s0006-3495(97)78701-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Breed J., Sankararamakrishnan R., Kerr I. D., Sansom M. S. Molecular dynamics simulations of water within models of ion channels. Biophys J. 1996 Apr;70(4):1643–1661. doi: 10.1016/S0006-3495(96)79727-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Breed J., Sansom M. S. Alamethicin channels modelled by simulated annealing and molecular dynamics. Biochem Soc Trans. 1994 May;22(2):157S–157S. doi: 10.1042/bst022157s. [DOI] [PubMed] [Google Scholar]
  6. Cafiso D. S. Alamethicin: a peptide model for voltage gating and protein-membrane interactions. Annu Rev Biophys Biomol Struct. 1994;23:141–165. doi: 10.1146/annurev.bb.23.060194.001041. [DOI] [PubMed] [Google Scholar]
  7. Cooper K., Jakobsson E., Wolynes P. The theory of ion transport through membrane channels. Prog Biophys Mol Biol. 1985;46(1):51–96. doi: 10.1016/0079-6107(85)90012-4. [DOI] [PubMed] [Google Scholar]
  8. Eisenberg M., Hall J. E., Mead C. A. The nature of the voltage-dependent conductance induced by alamethicin in black lipid membranes. J Membr Biol. 1973 Dec 31;14(2):143–176. doi: 10.1007/BF01868075. [DOI] [PubMed] [Google Scholar]
  9. Gordon L. G., Haydon D. A. The unit conductance channel of alamethicin. Biochim Biophys Acta. 1972 Mar 17;255(3):1014–1018. doi: 10.1016/0005-2736(72)90415-4. [DOI] [PubMed] [Google Scholar]
  10. Gutman M., Tsfadia Y., Masad A., Nachliel E. Quantitation of physical-chemical properties of the aqueous phase inside the phoE ionic channel. Biochim Biophys Acta. 1992 Aug 24;1109(2):141–148. doi: 10.1016/0005-2736(92)90077-y. [DOI] [PubMed] [Google Scholar]
  11. Hall J. E., Vodyanoy I., Balasubramanian T. M., Marshall G. R. Alamethicin. A rich model for channel behavior. Biophys J. 1984 Jan;45(1):233–247. doi: 10.1016/S0006-3495(84)84151-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kerr I. D., Sankararamakrishnan R., Smart O. S., Sansom M. S. Parallel helix bundles and ion channels: molecular modeling via simulated annealing and restrained molecular dynamics. Biophys J. 1994 Oct;67(4):1501–1515. doi: 10.1016/S0006-3495(94)80624-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kienker P. K., DeGrado W. F., Lear J. D. A helical-dipole model describes the single-channel current rectification of an uncharged peptide ion channel. Proc Natl Acad Sci U S A. 1994 May 24;91(11):4859–4863. doi: 10.1073/pnas.91.11.4859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kienker P. K., Lear J. D. Charge selectivity of the designed uncharged peptide ion channel Ac-(LSSLLSL)3-CONH2. Biophys J. 1995 Apr;68(4):1347–1358. doi: 10.1016/S0006-3495(95)80307-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Latorre R., Alvarez O. Voltage-dependent channels in planar lipid bilayer membranes. Physiol Rev. 1981 Jan;61(1):77–150. doi: 10.1152/physrev.1981.61.1.77. [DOI] [PubMed] [Google Scholar]
  16. Levitt D. G. General continuum theory for multiion channel. I. Theory. Biophys J. 1991 Feb;59(2):271–277. doi: 10.1016/S0006-3495(91)82220-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Levitt D. G. General continuum theory for multiion channel. II. Application to acetylcholine channel. Biophys J. 1991 Feb;59(2):278–288. doi: 10.1016/S0006-3495(91)82221-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Levitt D. G. Interpretation of biological ion channel flux data--reaction-rate versus continuum theory. Annu Rev Biophys Biophys Chem. 1986;15:29–57. doi: 10.1146/annurev.bb.15.060186.000333. [DOI] [PubMed] [Google Scholar]
  19. Levitt D. G. Strong electrolyte continuum theory solution for equilibrium profiles, diffusion limitation, and conductance in charged ion channels. Biophys J. 1985 Jul;48(1):19–31. doi: 10.1016/S0006-3495(85)83757-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Mak D. O., Webb W. W. Molecular dynamics of alamethicin transmembrane channels from open-channel current noise analysis. Biophys J. 1995 Dec;69(6):2337–2349. doi: 10.1016/S0006-3495(95)80103-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Mak D. O., Webb W. W. Two classes of alamethicin transmembrane channels: molecular models from single-channel properties. Biophys J. 1995 Dec;69(6):2323–2336. doi: 10.1016/S0006-3495(95)80102-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Molle G., Dugast J. Y., Spach G., Duclohier H. Ion channel stabilization of synthetic alamethicin analogs by rings of inter-helix H-bonds. Biophys J. 1996 Apr;70(4):1669–1675. doi: 10.1016/S0006-3495(96)79729-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. North C. L., Barranger-Mathys M., Cafiso D. S. Membrane orientation of the N-terminal segment of alamethicin determined by solid-state 15N NMR. Biophys J. 1995 Dec;69(6):2392–2397. doi: 10.1016/S0006-3495(95)80108-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Sansom M. S. Alamethicin and related peptaibols--model ion channels. Eur Biophys J. 1993;22(2):105–124. doi: 10.1007/BF00196915. [DOI] [PubMed] [Google Scholar]
  25. Sansom M. S. Structure and function of channel-forming peptaibols. Q Rev Biophys. 1993 Nov;26(4):365–421. doi: 10.1017/s0033583500002833. [DOI] [PubMed] [Google Scholar]
  26. Seoh S. A., Busath D. The permeation properties of small organic cations in gramicidin A channels. Biophys J. 1993 Apr;64(4):1017–1028. doi: 10.1016/S0006-3495(93)81467-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Smart O. S., Goodfellow J. M., Wallace B. A. The pore dimensions of gramicidin A. Biophys J. 1993 Dec;65(6):2455–2460. doi: 10.1016/S0006-3495(93)81293-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Taylor R. J., de Levie R. "Reversed" alamethicin conductance in lipid bilayers. Biophys J. 1991 Apr;59(4):873–879. doi: 10.1016/S0006-3495(91)82299-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Unwin N. Acetylcholine receptor channel imaged in the open state. Nature. 1995 Jan 5;373(6509):37–43. doi: 10.1038/373037a0. [DOI] [PubMed] [Google Scholar]
  30. Vodyanoy I., Hall J. E., Balasubramanian T. M. Alamethicin-induced current-voltage curve asymmetry in lipid bilayers. Biophys J. 1983 Apr;42(1):71–82. doi: 10.1016/S0006-3495(83)84370-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Woolley G. A., Epand R. M., Kerr I. D., Sansom M. S., Wallace B. A. Alamethicin pyromellitate: an ion-activated channel-forming peptide. Biochemistry. 1994 Jun 7;33(22):6850–6858. doi: 10.1021/bi00188a014. [DOI] [PubMed] [Google Scholar]
  32. Woolley G. A., Wallace B. A. Model ion channels: gramicidin and alamethicin. J Membr Biol. 1992 Aug;129(2):109–136. doi: 10.1007/BF00219508. [DOI] [PubMed] [Google Scholar]
  33. You S., Peng S., Lien L., Breed J., Sansom M. S., Woolley G. A. Engineering stabilized ion channels: covalent dimers of alamethicin. Biochemistry. 1996 May 21;35(20):6225–6232. doi: 10.1021/bi9529216. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES