Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1997 Sep;73(3):1253–1262. doi: 10.1016/S0006-3495(97)78158-X

On the calculation of magnetic fields based on multipole modeling of focal biological current sources.

G Nolte 1, G Curio 1
PMCID: PMC1181025  PMID: 9284293

Abstract

Spatially restricted biological current distributions, like the primary neuronal response in the human somatosensory cortex evoked by electric nerve stimulation, can be described adequately by a current multipole expansion. Here analytic formulas are derived for computing magnetic fields induced by current multipoles in terms of an nth-order derivative of the dipole field. The required differential operators are given in closed form for arbitrary order. The concept is realized in different forms for an expansion of the scalar as well as the dyadic Green's function, the latter allowing for separation of those multipolar source components that are electrically silent but magnetically detectable. The resulting formulas are generally applicable for current sources embedded in arbitrarily shaped volume conductors. By using neurophysiologically relevant source parameters, examples are provided for a spherical volume conductor with an analytically given dipole field. An analysis of the signal-to-noise ratio for multipole coefficients up to the octapolar term indicates that the lateral extent of cortical current sources can be detected by magnetoencephalographic recordings.

Full text

PDF
1256

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Curio G., Mackert B. M., Burghoff M., Koetitz R., Abraham-Fuchs K., Härer W. Localization of evoked neuromagnetic 600 Hz activity in the cerebral somatosensory system. Electroencephalogr Clin Neurophysiol. 1994 Dec;91(6):483–487. doi: 10.1016/0013-4694(94)90169-4. [DOI] [PubMed] [Google Scholar]
  2. Durand D. M., Lin J. C. Theoretical study of magnetic field of current monopoles in special volume conductor using symmetry analysis. IEEE Trans Biomed Eng. 1997 Feb;44(2):177–187. doi: 10.1109/10.552247. [DOI] [PubMed] [Google Scholar]
  3. Geselowitz D. B. Two theorems concerning the quadrupole applicable to electrocardiography. IEEE Trans Biomed Eng. 1965 Jul-Oct;12(3):164–168. doi: 10.1109/tbme.1965.4502373. [DOI] [PubMed] [Google Scholar]
  4. Grynszpan F., Geselowitz D. B. Model studies of the magnetocardiogram. Biophys J. 1973 Sep;13(9):911–925. doi: 10.1016/S0006-3495(73)86034-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hari R., Karhu J., Hämäläinen M., Knuutila J., Salonen O., Sams M., Vilkman V. Functional organization of the human first and second somatosensory cortices: a neuromagnetic study. Eur J Neurosci. 1993 Jun 1;5(6):724–734. doi: 10.1111/j.1460-9568.1993.tb00536.x. [DOI] [PubMed] [Google Scholar]
  6. Kaas J. H. Plasticity of sensory and motor maps in adult mammals. Annu Rev Neurosci. 1991;14:137–167. doi: 10.1146/annurev.ne.14.030191.001033. [DOI] [PubMed] [Google Scholar]
  7. Merzenich M. M., Kaas J. H., Wall J., Nelson R. J., Sur M., Felleman D. Topographic reorganization of somatosensory cortical areas 3b and 1 in adult monkeys following restricted deafferentation. Neuroscience. 1983 Jan;8(1):33–55. doi: 10.1016/0306-4522(83)90024-6. [DOI] [PubMed] [Google Scholar]
  8. Mogilner A., Grossman J. A., Ribary U., Joliot M., Volkmann J., Rapaport D., Beasley R. W., Llinás R. R. Somatosensory cortical plasticity in adult humans revealed by magnetoencephalography. Proc Natl Acad Sci U S A. 1993 Apr 15;90(8):3593–3597. doi: 10.1073/pnas.90.8.3593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Mosher J. C., Lewis P. S., Leahy R. M. Multiple dipole modeling and localization from spatio-temporal MEG data. IEEE Trans Biomed Eng. 1992 Jun;39(6):541–557. doi: 10.1109/10.141192. [DOI] [PubMed] [Google Scholar]
  10. Pelizzone M., Hari R. Interpretation of neuromagnetic responses: two simple models for extended current sources in the human auditory cortex. Acta Otolaryngol Suppl. 1986;432:15–20. doi: 10.3109/00016488609108880. [DOI] [PubMed] [Google Scholar]
  11. Sarvas J. Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem. Phys Med Biol. 1987 Jan;32(1):11–22. doi: 10.1088/0031-9155/32/1/004. [DOI] [PubMed] [Google Scholar]
  12. Tan S., Roth B. J., Wikswo J. P., Jr The magnetic field of cortical current sources: the application of a spatial filtering model to the forward and inverse problems. Electroencephalogr Clin Neurophysiol. 1990 Jul;76(1):73–85. doi: 10.1016/0013-4694(90)90059-s. [DOI] [PubMed] [Google Scholar]
  13. Wikswo J. P., Jr, Roth B. J. Magnetic determination of the spatial extent of a single cortical current source: a theoretical analysis. Electroencephalogr Clin Neurophysiol. 1988 Mar;69(3):266–276. doi: 10.1016/0013-4694(88)90135-6. [DOI] [PubMed] [Google Scholar]
  14. Zhang Z., Jewett D. L. Insidious errors in dipole localization parameters at a single time-point due to model misspecification of number of shells. Electroencephalogr Clin Neurophysiol. 1993 Jan-Feb;88(1):1–11. doi: 10.1016/0168-5597(93)90022-h. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES