Skip to main content
Journal of Psychiatry & Neuroscience : JPN logoLink to Journal of Psychiatry & Neuroscience : JPN
. 1992 Nov;17(5):206–214.

Insights into the mechanisms of action of the MAO inhibitors phenelzine and tranylcypromine: a review.

G B Baker 1, R T Coutts 1, K F McKenna 1, R L Sherry-McKenna 1
PMCID: PMC1188458  PMID: 1362653

Abstract

Although the non-selective monoamine oxidase inhibitors phenelzine and tranylcypromine have been used for many years, much still remains to be understood about their mechanisms of action. Other factors, in addition to the inhibition of monoamine oxidase and the subsequent elevation of brain levels of the catecholamines and 5-hydroxytryptamine, may contribute to the overall pharmacological profiles of these drugs. This review also considers the effects on brain levels of amino acids and trace amines, uptake and release of neurotransmitter amines at nerve terminals, receptors for amino acids and amines, and enzymes other than monoamine oxidase, including enzymes involved in metabolism of other drugs. The possible contributions of metabolism and stereochemistry to the actions of these monoamine oxidase inhibitors are discussed.

Full text

PDF
214

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALLEVA J. J. METABOLISM OF TRANYLEYPROMINE-C14 AND DL AMPHETAMINE-C14 IN THE RAT. J Med Chem. 1963 Nov;6:621–624. doi: 10.1021/jm00342a001. [DOI] [PubMed] [Google Scholar]
  2. Ali B. H. Effect of some monoamine oxidase inhibitors on the thiamin status of rabbits. Br J Pharmacol. 1985 Dec;86(4):869–875. doi: 10.1111/j.1476-5381.1985.tb11109.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Amsterdam J. D., Berwish N. J. High dose tranylcypromine therapy for refractory depression. Pharmacopsychiatry. 1989 Jan;22(1):21–25. doi: 10.1055/s-2007-1014572. [DOI] [PubMed] [Google Scholar]
  4. Badawy A. A., Evans M. Inhibition of rat liver tryptophan pyrrolase activity and elevation of brain tryptophan concentration by acute administration of small doses of antidepressants. Br J Pharmacol. 1982 Sep;77(1):59–67. doi: 10.1111/j.1476-5381.1982.tb09269.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Badawy A. A., Evans M. Inhibition of rat liver tryptophan pyrrolase activity and elevation of brain tryptophan concentration by administration of antidepressants. Biochem Pharmacol. 1981 Jun 1;30(11):1211–1216. doi: 10.1016/0006-2952(81)90299-9. [DOI] [PubMed] [Google Scholar]
  6. Baker G. B., Hampson D. R., Coutts R. T., Micetich R. G., Hall T. W., Rao T. S. Detection and quantitation of a ring-hydroxylated metabolite of the antidepressant drug tranylcypromine. J Neural Transm. 1986;65(3-4):233–243. doi: 10.1007/BF01249085. [DOI] [PubMed] [Google Scholar]
  7. Baker G. B., Hiob L. E., Dewhurst W. G. Effects of monoamine oxidase inhibitors on release of dopamine and 5-hydroxytryptamine from rat striatum in vitro. Cell Mol Biol Incl Cyto Enzymol. 1980;26(2):183–186. [PubMed] [Google Scholar]
  8. Baker G. B., LeGatt D. F., Coutts R. T. Effects of acute and chronic administration of phenelzine on 2-phenylethylamine levels in rat brain. Proc West Pharmacol Soc. 1982;25:417–420. [PubMed] [Google Scholar]
  9. Baker G. B., Wong J. T., Yeung J. M., Coutts R. T. Effects of the antidepressant phenelzine on brain levels of gamma-aminobutyric acid (GABA). J Affect Disord. 1991 Mar;21(3):207–211. doi: 10.1016/0165-0327(91)90041-p. [DOI] [PubMed] [Google Scholar]
  10. Ballenger J. C. Pharmacotherapy of the panic disorders. J Clin Psychiatry. 1986 Jun;47 (Suppl):27–32. [PubMed] [Google Scholar]
  11. Blier P., de Montigny C., Chaput Y. A role for the serotonin system in the mechanism of action of antidepressant treatments: preclinical evidence. J Clin Psychiatry. 1990 Apr;51 (Suppl):14–21. [PubMed] [Google Scholar]
  12. Breslow M. F., Fankhauser M. P., Potter R. L., Meredith K. E., Misiaszek J., Hope D. G., Jr Role of gamma-aminobutyric acid in antipanic drug efficacy. Am J Psychiatry. 1989 Mar;146(3):353–356. doi: 10.1176/ajp.146.3.353. [DOI] [PubMed] [Google Scholar]
  13. Bélanger P. M., Atitsé-Gbeassor A. Inhibitory effect of phenelzine on oxidative microsomal enzyme systems of rat liver. Can J Physiol Pharmacol. 1983 May;61(5):524–529. doi: 10.1139/y83-080. [DOI] [PubMed] [Google Scholar]
  14. Bélanger P. M., Atitśe-Gbeassor A. Inhibitory effect of tranylcypromine on hepatic drug metabolism in the rat. Biochem Pharmacol. 1982 Aug 15;31(16):2679–2683. doi: 10.1016/0006-2952(82)90719-5. [DOI] [PubMed] [Google Scholar]
  15. Calverley D. G., Baker G. B., Coutts R. T., Dewhurst W. G. A method for measurement of tranylcypromine in rat brain regions using gas chromatography with electron capture detection. Biochem Pharmacol. 1981 Apr 15;30(8):861–867. doi: 10.1016/s0006-2952(81)80008-1. [DOI] [PubMed] [Google Scholar]
  16. Clark B., Thompson J. W., Widdrington G. Analysis of the inhibition of pethidine N-demethylation by monoamine oxidase inhibitors and some other drugs with special reference to drug interactions in man. Br J Pharmacol. 1972 Jan;44(1):89–99. doi: 10.1111/j.1476-5381.1972.tb07241.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Clineschmidt B. V., Horita A. The monoamine oxidase catalyzed degradation of phenelzine-l-14C, an irreversible inhibitor of monoamine oxidase--I. Studies in vitro. Biochem Pharmacol. 1969 May;18(5):1011–1020. doi: 10.1016/0006-2952(69)90104-x. [DOI] [PubMed] [Google Scholar]
  18. Clineschmidt B. V., Horita A. The monoamine oxidase catalyzed degradation of phenelzine-l-14C, an irreversible inhibitor of monoamine oxidase--II. Studies in vivo. Biochem Pharmacol. 1969 May;18(5):1021–1028. doi: 10.1016/0006-2952(69)90105-1. [DOI] [PubMed] [Google Scholar]
  19. Cohen R. M., Ebstein R. P., Daly J. W., Murphy D. L. Chronic effects of a monoamine oxidase-inhibiting antidepressant: decreases in functional alpha-adrenergic autoreceptors precede the decrease in norepinephrine-stimulated cyclic adenosine 3': 5'-monophosphate systems in rat brain. J Neurosci. 1982 Nov;2(11):1588–1595. doi: 10.1523/JNEUROSCI.02-11-01588.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Coutts R. T., Baker G. B. Implications of chirality and geometric isomerism in some psychoactive drugs and their metabolites. Chirality. 1989;1(2):99–120. doi: 10.1002/chir.530010204. [DOI] [PubMed] [Google Scholar]
  21. Coutts R. T., Mozayani A., Danielson T. J., Baker G. B. Tissue levels and some pharmacological properties of an acetylated metabolite of phenelzine in the rat. J Pharm Sci. 1991 Aug;80(8):765–767. doi: 10.1002/jps.2600800812. [DOI] [PubMed] [Google Scholar]
  22. Coutts R. T., Rao T. S., Baker G. B., Micetich R. G., Hall T. W. Neurochemical and neuropharmacological properties of 4-fluorotranylcypromine. Cell Mol Neurobiol. 1987 Sep;7(3):271–290. doi: 10.1007/BF00711304. [DOI] [PubMed] [Google Scholar]
  23. Dupont H., Davies D. S., Strolin-Benedetti M. Inhibition of cytochrome P-450-dependent oxidation reactions by MAO inhibitors in rat liver microsomes. Biochem Pharmacol. 1987 May 15;36(10):1651–1657. doi: 10.1016/0006-2952(87)90050-5. [DOI] [PubMed] [Google Scholar]
  24. Dyck L. E., Dewar K. M. Inhibition of aromatic L-amino acid decarboxylase and tyrosine aminotransferase by the monoamine oxidase inhibitor phenelzine. J Neurochem. 1986 Jun;46(6):1899–1903. doi: 10.1111/j.1471-4159.1986.tb08511.x. [DOI] [PubMed] [Google Scholar]
  25. Dyck L. E., Durden D. A., Boulton A. A. Formation of beta-phenylethylamine from the antidepressant, beta-phenylethylhydrazine. Biochem Pharmacol. 1985 Jun 1;34(11):1925–1929. doi: 10.1016/0006-2952(85)90310-7. [DOI] [PubMed] [Google Scholar]
  26. Dyck L. E. The behavioural effects of phenelzine and phenylethylamine may be due to amine release. Brain Res Bull. 1984 Jan;12(1):23–28. doi: 10.1016/0361-9230(84)90210-7. [DOI] [PubMed] [Google Scholar]
  27. Eade N. R., Renton K. W. Effect of monoamine oxidase inhibitors on the N-demethylation and hydrolysis of meperidine. Biochem Pharmacol. 1970 Jul;19(7):2243–2250. doi: 10.1016/0006-2952(70)90123-1. [DOI] [PubMed] [Google Scholar]
  28. Ellis E. F., Rosenblum W. I., Birkle D. L., Traweek D. L., Cockrell C. S. Lowering of brain levels of the depressant prostaglandin D2 by the anti-depressant tranylcypromine. Biochem Pharmacol. 1982 May 1;31(9):1783–1784. doi: 10.1016/0006-2952(82)90685-2. [DOI] [PubMed] [Google Scholar]
  29. Fischer W. Zur antikonvulsiven Wirksamkeit von (+)- und (-)-Tranylcypromin. Pharmazie. 1991 May;46(5):357–358. [PubMed] [Google Scholar]
  30. Frazer A., Lucki I. Antidepressant drugs: effects on beta-adrenergic and serotonineregic receptors. Adv Biochem Psychopharmacol. 1982;31:69–90. [PubMed] [Google Scholar]
  31. Gaultieri C. T., Powell S. F. Psychoactive drug interactions. J Clin Psychiatry. 1978 Sep;39(9):720–729. [PubMed] [Google Scholar]
  32. Giller E., Bialos D., Riddle M., Sholomskas A., Harkness L. Monoamine oxidase inhibitor-responsive depression. Psychiatry Res. 1982 Feb;6(1):41–48. doi: 10.1016/0165-1781(82)90036-1. [DOI] [PubMed] [Google Scholar]
  33. Giller E., Jr, Lieb J. MAO inhibitors and platelet MAO inhibition. Commun Psychopharmacol. 1980;4(1):79–82. [PubMed] [Google Scholar]
  34. Grahame-Smith D. G. Studies in vivo on the relationship between brain tryptophan, brain 5-HT synthesis and hyperactivity in rats treated with a monoamine oxidase inhibitor and L-tryptophan. J Neurochem. 1971 Jun;18(6):1053–1066. doi: 10.1111/j.1471-4159.1971.tb12034.x. [DOI] [PubMed] [Google Scholar]
  35. Greenshaw A. J., Nazarali A. J., Rao T. S., Baker G. B., Coutts R. T. Chronic tranylcypromine treatment induces functional alpha 2-adrenoceptor down-regulation in rats. Eur J Pharmacol. 1988 Sep 1;154(1):67–72. doi: 10.1016/0014-2999(88)90364-0. [DOI] [PubMed] [Google Scholar]
  36. Guze B. H., Baxter L. R., Jr, Rego J. Refractory depression treated with high doses of monoamine oxidase inhibitor. J Clin Psychiatry. 1987 Jan;48(1):31–32. [PubMed] [Google Scholar]
  37. Heal D. J., Butler S. A., Hurst E. M., Buckett W. R. Antidepressant treatments, including sibutramine hydrochloride and electroconvulsive shock, decrease beta 1- but not beta 2-adrenoceptors in rat cortex. J Neurochem. 1989 Oct;53(4):1019–1025. doi: 10.1111/j.1471-4159.1989.tb07389.x. [DOI] [PubMed] [Google Scholar]
  38. Hendley E. D., Snyder S. H. Relationship between the action of monoamine oxidase inhibitors on the noradrenaline uptake system and their antidepressant efficacy. Nature. 1968 Dec 28;220(5174):1330–1331. doi: 10.1038/2201330a0. [DOI] [PubMed] [Google Scholar]
  39. Horn A. S., Snyder S. H. Steric requirements for catecholamine uptake by rat brain synaptosomes: studies with rigid analogs of amphetamine. J Pharmacol Exp Ther. 1972 Mar;180(3):523–530. [PubMed] [Google Scholar]
  40. Keck P. E., Jr, Carter W. P., Nierenberg A. A., Cooper T. B., Potter W. Z., Rothschild A. J. Acute cardiovascular effects of tranylcypromine: correlation with plasma drug, metabolite, norepinephrine, and MHPG levels. J Clin Psychiatry. 1991 Jun;52(6):250–254. [PubMed] [Google Scholar]
  41. Kimber J. R., Cross J. A., Horton R. W. Benzodiazepine and GABAA receptors in rat brain following chronic antidepressant drug administration. Biochem Pharmacol. 1987 Dec 1;36(23):4173–4175. doi: 10.1016/0006-2952(87)90579-x. [DOI] [PubMed] [Google Scholar]
  42. Koshikawa N., Maruyama Y., Kobayashi M., Campbell I. C. Rapid development of brain beta-adrenoceptor down-regulation induced by phenelzine: subcellular studies. Eur J Pharmacol. 1989 Oct 24;170(1-2):101–104. doi: 10.1016/0014-2999(89)90141-6. [DOI] [PubMed] [Google Scholar]
  43. Lloyd K. G., Thuret F., Pilc A. Upregulation of gamma-aminobutyric acid (GABA) B binding sites in rat frontal cortex: a common action of repeated administration of different classes of antidepressants and electroshock. J Pharmacol Exp Ther. 1985 Oct;235(1):191–199. [PubMed] [Google Scholar]
  44. Mallinger A. G., Edwards D. J., Himmelhoch J. M., Knopf S., Ehler J. Pharmacokinetics of tranylcypromine in patients who are depressed: relationship to cardiovascular effects. Clin Pharmacol Ther. 1986 Oct;40(4):444–450. doi: 10.1038/clpt.1986.205. [DOI] [PubMed] [Google Scholar]
  45. McDaniel K. D. Clinical pharmacology of monoamine oxidase inhibitors. Clin Neuropharmacol. 1986;9(3):207–234. doi: 10.1097/00002826-198606000-00001. [DOI] [PubMed] [Google Scholar]
  46. McKenna K. F., Baker G. B., Coutts R. T., Greenshaw A. J. Chronic administration of the antidepressant-antipanic drug phenelzine and its N-acetylated analogue: effects on monoamine oxidase, biogenic amines, and alpha 2-adrenoreceptor function. J Pharm Sci. 1992 Aug;81(8):832–835. doi: 10.1002/jps.2600810823. [DOI] [PubMed] [Google Scholar]
  47. McKenna K. F., Baker G. B., Coutts R. T. N2-acetylphenelzine: effects on rat brain GABA, alanine and biogenic amines. Naunyn Schmiedebergs Arch Pharmacol. 1991 May;343(5):478–482. doi: 10.1007/BF00169549. [DOI] [PubMed] [Google Scholar]
  48. McKenna K. F., Baker G. B., Coutts R. T., Rauw G., Mozayani A., Danielson T. J. Recent studies on the MAO inhibitor phenelzine and its possible metabolites. J Neural Transm Suppl. 1990;32:113–118. doi: 10.1007/978-3-7091-9113-2_15. [DOI] [PubMed] [Google Scholar]
  49. McManus D. J., Baker G. B., Martin I. L., Greenshaw A. J., McKenna K. F. Effects of the antidepressant/antipanic drug phenelzine on GABA concentrations and GABA-transaminase activity in rat brain. Biochem Pharmacol. 1992 Jun 9;43(11):2486–2489. doi: 10.1016/0006-2952(92)90331-c. [DOI] [PubMed] [Google Scholar]
  50. McManus D. J., Greenshaw A. J. Differential effects of chronic antidepressants in behavioural tests of beta-adrenergic and GABAB receptor function. Psychopharmacology (Berl) 1991;103(2):204–208. doi: 10.1007/BF02244204. [DOI] [PubMed] [Google Scholar]
  51. Mozayani A., Coutts R. T., Danielson T. J., Baker G. B. Metabolic acetylation of phenelzine in rats. Res Commun Chem Pathol Pharmacol. 1988 Dec;62(3):397–406. [PubMed] [Google Scholar]
  52. Nazarali A. J., Baker G. B., Coutts R. T., Greenshaw A. J. Para-hydroxytranylcypromine: presence in rat brain and heart following administration of tranylcypromine and an N-cyanoethyl analogue. Eur J Drug Metab Pharmacokinet. 1987 Jul-Sep;12(3):207–214. doi: 10.1007/BF03189899. [DOI] [PubMed] [Google Scholar]
  53. Ordway G. A., Gambarana C., Tejani-Butt S. M., Areso P., Hauptmann M., Frazer A. Preferential reduction of binding of 125I-iodopindolol to beta-1 adrenoceptors in the amygdala of rat after antidepressant treatments. J Pharmacol Exp Ther. 1991 May;257(2):681–690. [PubMed] [Google Scholar]
  54. Paterson I. A., Juorio A. V., Boulton A. A. 2-Phenylethylamine: a modulator of catecholamine transmission in the mammalian central nervous system? J Neurochem. 1990 Dec;55(6):1827–1837. doi: 10.1111/j.1471-4159.1990.tb05764.x. [DOI] [PubMed] [Google Scholar]
  55. Pearlman C. High-dosage tranylcypromine in refractory depression. J Clin Psychiatry. 1987 Oct;48(10):424–425. [PubMed] [Google Scholar]
  56. Perry T. L., Hansen S. Sustained drug-induced elevation of brain GABA in the rat. J Neurochem. 1973 Nov;21(5):1167–1175. doi: 10.1111/j.1471-4159.1973.tb07572.x. [DOI] [PubMed] [Google Scholar]
  57. Philips S. R., Baker G. B., McKim H. R. Effects of tranylcypromine on the concentration of some trace amines in the diencephalon and hippocampus of the rat. Experientia. 1980 Feb 15;36(2):241–242. doi: 10.1007/BF01953756. [DOI] [PubMed] [Google Scholar]
  58. Philips S. R., Boulton A. A. The effect of monoamine oxidase inhibitors on some arylalkylamines in rate striatum. J Neurochem. 1979 Jul;33(1):159–167. doi: 10.1111/j.1471-4159.1979.tb11718.x. [DOI] [PubMed] [Google Scholar]
  59. Popov N., Matthies H. Some effects of monoamine oxidase inhibitors on the metabolism of gamma-aminobutyric acid in rat brain. J Neurochem. 1969 Jun;16(3):899–907. doi: 10.1111/j.1471-4159.1969.tb08978.x. [DOI] [PubMed] [Google Scholar]
  60. Raiteri M., Del Carmine R., Bertollini A., Levi G. Effect of sympathomimetic amines on the synaptosomal transport of noradrenaline, dopamine and 5-hydroxytryptamine. Eur J Pharmacol. 1977 Jan 21;41(2):133–143. doi: 10.1016/0014-2999(77)90202-3. [DOI] [PubMed] [Google Scholar]
  61. Reigle T. G., Orsulak P. J., Avni J., Platz P. A., Schildkraut J. J. The effects of tranylcypromine isomers on norepinephrine-H3 metabolism in rat brain. Psychopharmacology (Berl) 1980;69(2):193–199. doi: 10.1007/BF00427649. [DOI] [PubMed] [Google Scholar]
  62. Reynolds G. P., Rausch W. D., Riederer P. Effects of tranylcypromine stereoisomers on monamine oxidation in man. Br J Clin Pharmacol. 1980 May;9(5):521–523. doi: 10.1111/j.1365-2125.1980.tb05852.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Robinson D. S., Campbell I. C., Walker M., Statham N. J., Lovenberg W., Murphy D. L. Effects of chronic monoamine oxidase inhibitor treatment on biogenic amine metabolism in rat brain. Neuropharmacology. 1979 Oct;18(10):771–776. doi: 10.1016/0028-3908(79)90021-2. [DOI] [PubMed] [Google Scholar]
  64. Robinson D. S., Cooper T. B., Jindal S. P., Corcella J., Lutz T. Metabolism and pharmacokinetics of phenelzine: lack of evidence for acetylation pathway in humans. J Clin Psychopharmacol. 1985 Dec;5(6):333–337. [PubMed] [Google Scholar]
  65. Rose S. The relationship of acetylation phenotype to treatment with MAOIs: a review. J Clin Psychopharmacol. 1982 Jun;2(3):161–164. [PubMed] [Google Scholar]
  66. Schildkraut J. J. Tranylcypromine: effects on norepinephrine metabolism in rat brain. Am J Psychiatry. 1970 Jan;126(7):925–931. doi: 10.1176/ajp.126.7.925. [DOI] [PubMed] [Google Scholar]
  67. Sherry-McKenna R. L., Baker G. B., Mousseau D. D., Coutts R. T., Dewhurst W. G. 4-Methoxytranylcypromine, a monoamine oxidase inhibitor: effects on biogenic amines in rat brain following chronic administration. Biol Psychiatry. 1992 May 1;31(9):881–888. [PubMed] [Google Scholar]
  68. Sherry R. L., Baker G. B., Coutts R. T. Effects of low-dose 4-fluorotranylcypromine on rat brain monoamine oxidase and neurotransmitter amines. Biol Psychiatry. 1990 Sep 15;28(6):539–543. doi: 10.1016/0006-3223(90)90491-j. [DOI] [PubMed] [Google Scholar]
  69. Simpson L. L. Evidence that deprenyl, A type B monoamine oxidase inhibitor, is an indirectly acting sympathomimetic amine. Biochem Pharmacol. 1978;27(11):1591–1595. doi: 10.1016/0006-2952(78)90490-2. [DOI] [PubMed] [Google Scholar]
  70. Smith D. F. Tranylcypromine stereoisomers, monoaminergic neurotransmission and behavior. A minireview. Pharmakopsychiatr Neuropsychopharmakol. 1980 May;13(3):130–136. doi: 10.1055/s-2007-1019622. [DOI] [PubMed] [Google Scholar]
  71. Smith S. E., Lambourn J., Tyrer P. J. Antipyrine elimination by patients under treatment with monoamine oxidase inhibitors. Br J Clin Pharmacol. 1980 Jan;9(1):21–25. doi: 10.1111/j.1365-2125.1980.tb04791.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Suranyi-Cadotte B. E., Dam T. V., Quirion R. Antidepressant--anxiolytic interaction: decreased density of benzodiazepine receptors in rat brain following chronic administration of antidepressants. Eur J Pharmacol. 1984 Nov 27;106(3):673–675. doi: 10.1016/0014-2999(84)90079-7. [DOI] [PubMed] [Google Scholar]
  73. Tabakoff B., Moses F. Differential effects of tranylcypromine and pargyline on indoleamines in brain. Biochem Pharmacol. 1976 Dec 1;25(23):2555–2560. doi: 10.1016/0006-2952(76)90509-8. [DOI] [PubMed] [Google Scholar]
  74. Tollefson G. D. Monoamine oxidase inhibitors: a review. J Clin Psychiatry. 1983 Aug;44(8):280–288. [PubMed] [Google Scholar]
  75. Wong J. T., Baker G. B., Coutts R. T., Dewhurst W. G. Long-lasting elevation of alanine in brain produced by the antidepressant phenelzine. Brain Res Bull. 1990 Jul;25(1):179–181. doi: 10.1016/0361-9230(90)90272-2. [DOI] [PubMed] [Google Scholar]
  76. Youdim M. B., Aronson J. K., Blau K., Green A. R., Grahame-Smith D. G. Tranylcypromine ('Parnate') overdose: measurement of tranylcypromine concentrations and MAO inhibitory activity and identification of amphetamines in plasma. Psychol Med. 1979 May;9(2):377–382. doi: 10.1017/s0033291700030890. [DOI] [PubMed] [Google Scholar]
  77. Young S. N. Use of tryptophan in combination with other antidepressant treatments: a review. J Psychiatry Neurosci. 1991 Dec;16(5):241–246. [PMC free article] [PubMed] [Google Scholar]
  78. Yu P. H., Davis B. A., Durden D. A. Enzymatic N-methylation of phenelzine catalyzed by methyltransferases from adrenal and other tissues. Drug Metab Dispos. 1991 Jul-Aug;19(4):830–834. [PubMed] [Google Scholar]

Articles from Journal of Psychiatry and Neuroscience are provided here courtesy of Canadian Medical Association

RESOURCES