Abstract
1. The effects of the Na+ electrochemical potential gradient on gamma-aminobutyric acid (GABA)-induced Cl- currents (ICl) in frog sensory neurones were studied, using a suction pipette technique with which internal perfusion can be accomplished under current- and voltage-clamp conditions. 2. Under current clamp, the depolarizing response to GABA decreased in the presence of external Na+. A similar external Na+-dependent reduction in the GABA-induced inward ICl was observed under voltage clamp. The reversal potential of GABA-induced ICl (EGABA) was nearly equal to the Cl- equilibrium potential (ECl), irrespective of the presence or absence of external Na+. 3. Varying the Na+ influx by changing the holding membrane potential (VH) altered the GABA response: the GABA-induced ICl decreased progressively as VH became more negative. 4. The effects of changing the external and internal Na+ concentrations ([Na+]o and [Na+]i) on the GABA-induced ICl were also studied. Increasing [Na+]o at a constant [Na+]i reduced this current while increasing [Na+]i at a fixed [Na+]o facilitated it. 5. A high temperature coefficient of about 3 was estimated with respect to the percentage reduction in GABA-induced ICl due to [Na+]o. 6. These results indicate that the [Na+]o-dependent suppression of GABA-induced ICl was mediated chiefly by the uptake of GABA subserved by a Na-GABA co-transport mechanism. 7. GABA dose-response measurements were made with and without external Na+. The [Na+]o-induced suppression was more pronounced in relative amount at lower concentrations and in absolute amount at intermediate concentrations. Analysis of these data indicates, however, that the Na+-coupled GABA influx kept increasing at GABA concentrations high enough to nearly saturate GABA-induced ICl, and the same saturating level was observed as in the Na+-free case. This indicates that the electrogenic co-transport current was much smaller so that our measurements of GABA-induced ICl' were contaminated very little. Thus, the present method based on recording of GABA-induced ICl was legitimate for the analysis of the Na-GABA co-transport. 8. By analysing the [Na+]o-dependent suppression of GABA-induced ICl, the stoichiometric ratio of the underlying co-transport was estimated to be one: one Na+ ion per GABA molecule. 9. The ICl induced by GABA agonists such as beta-alanine, taurine, l-GABOB (l-gamma-amino-beta-hydroxybutyric acid) and muscimol was not affected by the amount of external Na+ present, suggesting difference in the affinity between receptor and transport carrier.
Full text
PDF![543](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e2d/1192320/d41ef47c3632/jphysiol00522-0543.png)
![544](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e2d/1192320/c67881b14133/jphysiol00522-0544.png)
![545](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e2d/1192320/952a3a6f2581/jphysiol00522-0545.png)
![546](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e2d/1192320/6d76f13966ed/jphysiol00522-0546.png)
![547](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e2d/1192320/f0321d02839a/jphysiol00522-0547.png)
![548](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e2d/1192320/b6caf2526dda/jphysiol00522-0548.png)
![549](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e2d/1192320/1e60d1c4b1e8/jphysiol00522-0549.png)
![550](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e2d/1192320/3970e2765f80/jphysiol00522-0550.png)
![551](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e2d/1192320/4035cca5918d/jphysiol00522-0551.png)
![552](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e2d/1192320/ffbfecce1124/jphysiol00522-0552.png)
![553](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e2d/1192320/14b8fb7f8db4/jphysiol00522-0553.png)
![554](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e2d/1192320/1912e913ba45/jphysiol00522-0554.png)
![555](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e2d/1192320/234ca477d378/jphysiol00522-0555.png)
![556](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e2d/1192320/e111a2c5d835/jphysiol00522-0556.png)
![557](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e2d/1192320/46de665e6ecb/jphysiol00522-0557.png)
![558](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e2d/1192320/d46c0bed7f83/jphysiol00522-0558.png)
![559](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e2d/1192320/8987ef7cf60b/jphysiol00522-0559.png)
![560](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e2d/1192320/238a1cb707a8/jphysiol00522-0560.png)
![561](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e2d/1192320/5d162d987795/jphysiol00522-0561.png)
![562](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e2d/1192320/2306d0166cf0/jphysiol00522-0562.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Akaike N., Hattori K., Inomata N., Oomura Y. gamma-Aminobutyric-acid- and pentobarbitone-gated chloride currents in internally perfused frog sensory neurones. J Physiol. 1985 Mar;360:367–386. doi: 10.1113/jphysiol.1985.sp015622. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Akaike N., Hattori K., Oomura Y., Carpenter D. O. Bicuculline and picrotoxin block gamma-aminobutyric acid-gated Cl- conductance by different mechanisms. Experientia. 1985 Jan 15;41(1):70–71. doi: 10.1007/BF02005880. [DOI] [PubMed] [Google Scholar]
- Akaike N., Inoue M., Krishtal O. A. 'Concentration-clamp' study of gamma-aminobutyric-acid-induced chloride current kinetics in frog sensory neurones. J Physiol. 1986 Oct;379:171–185. doi: 10.1113/jphysiol.1986.sp016246. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Beart P. M., Johnston G. A. GABA uptake in rat brain slices: inhibition by GABA analogues and by various drugs. J Neurochem. 1973 Feb;20(2):319–324. doi: 10.1111/j.1471-4159.1973.tb12131.x. [DOI] [PubMed] [Google Scholar]
- Beart P. M., Johnston G. A., Uhr M. L. Competitive inhibition of GABA uptake in rat brain slices by some GABA analogues of restricted conformation. J Neurochem. 1972 Aug;19(8):1855–1861. doi: 10.1111/j.1471-4159.1972.tb01474.x. [DOI] [PubMed] [Google Scholar]
- Bihler I., Adamic S. The effect of lithium on intestinal sugar transport. Biochim Biophys Acta. 1967 Jul 3;135(3):466–474. doi: 10.1016/0005-2736(67)90036-3. [DOI] [PubMed] [Google Scholar]
- Blaustein M. P., King A. C. Influence of membrane potential on the sodium-dependent uptake of gamma-aminobutyric acid by presynaptic nerve terminals: experimental observations and theoretical considerations. J Membr Biol. 1976 Dec 28;30(2):153–173. doi: 10.1007/BF01869665. [DOI] [PubMed] [Google Scholar]
- Carpenter D. O., Alving B. O. A contribution of an electrogenic Na+ pump to membrane potential in Aplysia neurons. J Gen Physiol. 1968 Jul;52(1):1–21. doi: 10.1085/jgp.52.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Crane R. K. Na+ -dependent transport in the intestine and other animal tissues. Fed Proc. 1965 Sep-Oct;24(5):1000–1006. [PubMed] [Google Scholar]
- Davidoff R. A., Adair R. High-affinity uptake of (3H)gamma-aminobutyric acid into frog spinal cord slices. Brain Res. 1974 Aug 23;76(3):552–556. doi: 10.1016/0006-8993(74)90834-8. [DOI] [PubMed] [Google Scholar]
- Deitmer J. W., Ellis D. Changes in the intracellular sodium activity of sheep heart Purkinje fibres produced by calcium and other divalent cations. J Physiol. 1978 Apr;277:437–453. doi: 10.1113/jphysiol.1978.sp012283. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ECCLES J. C., SCHMIDT R., WILLIS W. D. PHARMACOLOGICAL STUDIES ON PRESYNAPTIC INHIBITION. J Physiol. 1963 Oct;168:500–530. doi: 10.1113/jphysiol.1963.sp007205. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FAUST R. G. The effect of anoxia and lithium ions on the absorption of D-glucose by the rat jejunum, in vitro. Biochim Biophys Acta. 1962 Jul 16;60:604–614. doi: 10.1016/0006-3002(62)90879-x. [DOI] [PubMed] [Google Scholar]
- Feltz P., Rasminsky M. A model for the mode of action of GABA on primary afferent terminals: depolarizing effects of GABA applied iontophoretically to neurones of mammalian dorsal root ganglia. Neuropharmacology. 1974 Jun;13(6):553–563. doi: 10.1016/0028-3908(74)90145-2. [DOI] [PubMed] [Google Scholar]
- Gallagher J. P., Higashi H., Nishi S. Characterization and ionic basis of GABA-induced depolarizations recorded in vitro from cat primary afferent neurones. J Physiol. 1978 Feb;275:263–282. doi: 10.1113/jphysiol.1978.sp012189. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gunter-Smith P. J., Grasset E., Schultz S. G. Sodium-coupled amino acid and sugar transport by Necturus small intestine. An equivalent electrical circuit analysis of a rheogenic co-transport system. J Membr Biol. 1982;66(1):25–39. doi: 10.1007/BF01868479. [DOI] [PubMed] [Google Scholar]
- Hattori K., Akaike N., Oomura Y., Kuraoka S. Internal perfusion studies demonstrating GABA-induced chloride responses in frog primary afferent neurons. Am J Physiol. 1984 Mar;246(3 Pt 1):C259–C265. doi: 10.1152/ajpcell.1984.246.3.C259. [DOI] [PubMed] [Google Scholar]
- Hattori K., Oomura Y., Akaike N. Diazepam action on gamma-aminobutyric acid-activated chloride currents in internally perfused frog sensory neurons. Cell Mol Neurobiol. 1986 Sep;6(3):307–323. doi: 10.1007/BF00711116. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Inoue M., Oomura Y., Yakushiji T., Akaike N. Intracellular calcium ions decrease the affinity of the GABA receptor. Nature. 1986 Nov 13;324(6093):156–158. doi: 10.1038/324156a0. [DOI] [PubMed] [Google Scholar]
- Ishizuka S., Hattori K., Akaike N. Separation of ionic currents in the somatic membrane of frog sensory neurons. J Membr Biol. 1984;78(1):19–28. doi: 10.1007/BF01872528. [DOI] [PubMed] [Google Scholar]
- Iversen L. L., Bloom F. E. Studies of the uptake of 3 H-gaba and ( 3 H)glycine in slices and homogenates of rat brain and spinal cord by electron microscopic autoradiography. Brain Res. 1972 Jun 8;41(1):131–143. doi: 10.1016/0006-8993(72)90621-x. [DOI] [PubMed] [Google Scholar]
- Iversen L. L., Johnston G. A. GABA uptake in rat central nervous system: comparison of uptake in slices and homogenates and the effects of some inhibitors. J Neurochem. 1971 Oct;18(10):1939–1950. doi: 10.1111/j.1471-4159.1971.tb09600.x. [DOI] [PubMed] [Google Scholar]
- Iversen L. L., Neal M. J. The uptake of [3H]GABA by slices of rat cerebral cortex. J Neurochem. 1968 Oct;15(10):1141–1149. doi: 10.1111/j.1471-4159.1968.tb06831.x. [DOI] [PubMed] [Google Scholar]
- Jauch P., Petersen O. H., Läuger P. Electrogenic properties of the sodium-alanine cotransporter in pancreatic acinar cells: I. Tight-seal whole-cell recordings. J Membr Biol. 1986;94(2):99–115. doi: 10.1007/BF01871191. [DOI] [PubMed] [Google Scholar]
- Kanner B. I. Bioenergetics of neurotransmitter transport. Biochim Biophys Acta. 1983 Dec 30;726(4):293–316. doi: 10.1016/0304-4173(83)90013-7. [DOI] [PubMed] [Google Scholar]
- Krogsgaard-Larsen P., Johnston G. A., Curtis D. R., Game C. J., McCulloch R. M. Structure and biological activity of a series of conformationally restricted analogues of GABA. J Neurochem. 1975 Dec;25(6):803–809. doi: 10.1111/j.1471-4159.1975.tb04411.x. [DOI] [PubMed] [Google Scholar]
- Lapointe J. Y., Hudson R. L., Schultz S. G. Current-voltage relations of sodium-coupled sugar transport across the apical membrane of Necturus small intestine. J Membr Biol. 1986;93(3):205–219. doi: 10.1007/BF01871175. [DOI] [PubMed] [Google Scholar]
- Lasher R. S. Uptake of GABA by neuronal and nonneuronal cells in dispersed cell cultures of postnatal rat cerebellum. J Neurobiol. 1975 Nov;6(6):597–608. doi: 10.1002/neu.480060606. [DOI] [PubMed] [Google Scholar]
- Levy R. A. The role of GABA in primary afferent depolarization. Prog Neurobiol. 1977;9(4):211–267. doi: 10.1016/0301-0082(77)90002-8. [DOI] [PubMed] [Google Scholar]
- Martin D. L. Kinetics of the sodium-dependent transport of gamma-aminobutyric acid by synaptosomes. J Neurochem. 1973 Aug;21(2):345–356. doi: 10.1111/j.1471-4159.1973.tb04255.x. [DOI] [PubMed] [Google Scholar]
- Pastuszko A., Wilson D. F., Erecinska M. Energetics of gamma-aminobutyrate transport in rat brain synaptosomes. J Biol Chem. 1982 Jul 10;257(13):7514–7519. [PubMed] [Google Scholar]
- SCHMIDT R. F. PHARMACOLOGICAL STUDIES ON THE PRIMARY AFFERENT DEPOLARIZATION OF THE TOAD SPINAL CORD. Pflugers Arch Gesamte Physiol Menschen Tiere. 1963 Jul 2;277:325–346. doi: 10.1007/BF00362515. [DOI] [PubMed] [Google Scholar]
- WEINSTEIN H., VARON S., MUHLEMAN D. R., ROBERTS E. A CARRIER-MEDIATED TRANSFER MODEL FOR THE ACCUMULATION OF 14-C-GAMMA-AMINOBUTYRIC ACID BY SUBCELLULAR BRAIN PARTICLES. Biochem Pharmacol. 1965 Mar;14:273–288. doi: 10.1016/0006-2952(65)90192-9. [DOI] [PubMed] [Google Scholar]
- Yazulla S. Factors controlling the release of GABA from goldfish retinal horizontal cells. Neurosci Res Suppl. 1985;2:S147–S165. doi: 10.1016/0921-8696(85)90014-3. [DOI] [PubMed] [Google Scholar]
- den Hertog A., Ritchie J. M. A comparison of the effect of temperature, metabolic inhibitors and of ouabain on the electrogenic componen of the sodium pump in mammalian non-myelinated nerve fibres. J Physiol. 1969 Oct;204(3):523–538. doi: 10.1113/jphysiol.1969.sp008929. [DOI] [PMC free article] [PubMed] [Google Scholar]