Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1987 May;386:45–61. doi: 10.1113/jphysiol.1987.sp016521

Are ninhydrin-positive substances volume-regulatory osmolytes in rat renal papillary cells?

R O Law 1, D P Turner 1
PMCID: PMC1192449  PMID: 3681715

Abstract

1. A study has been made of the concentrations and contents of ninhydrin-positive substances (n.p.s.), presumed to be predominantly but not exclusively amino acids, in the cells of rat renal papillary slices incubated in variously modified Krebs phosphate-bicarbonate Ringer solution. 2. When the medium osmolality was increased from 710 (control) to 2000 mosmol/kg H2O by additional NaCl and urea, the steady-state cellular n.p.s. concentration rose from 42.3 +/- 0.6 (mean +/- S.E. of mean; n = 36) to 105 +/- 2 (n = 68) mmol/l (glycine equivalent). Cell fluid content fell from 5.11 +/- 0.09 (n = 36) to 4.16 +/- 0.11 (n = 68) microliter/mg solute-free dry weight. Hence cell n.p.s. content increased from 211 +/- 4 (n = 36) to 421 +/- 10 (n = 68) nmol/mg solute-free dry weight. 3. A comparable loss of cell fluid was observed when urea was replaced by sucrose or sorbitol. No increase in cell n.p.s. occurred, and there was a marked cell Na+-for-K+ exchange. 4. The extent of the increase in cell n.p.s. in the presence of 2000 mosmol/kg H2O (NaCl + urea) was sensitive to the presence of external anions in the sequence acetate less than Cl- less than NO3- less than or equal to SCN-. 5. Cell n.p.s. concentration increased progressively as the medium osmolality was increased by the addition of urea, but Na+ at a concentration above 330 mmol/l had an inhibitory effect. The increase in n.p.s. concentration was also significantly reduced in hyperosmotic media in which Na+ was replaced by choline. 6. The increase in cell n.p.s. content due to hyperosmotic NaCl + urea was completely inhibited by pre-incubation in control medium containing trimethylamine N-oxide. 7. On transference of slices from control to hyperosmotic media (NaCl + urea) the steady-state increase in cell n.p.s. concentration was complete within 20 min and followed a time course similar to that for cell fluid loss. The n.p.s. concentration and cell fluid content returned to control levels, with similar time courses, following re-immersion in control medium. 8. Efflux of alpha-amino[1-14C]isobutyric acid (AIB) from slices pre-loaded in control medium containing 1 mmol AIB/l was slightly but significantly slower into AIB-free hyperosmotic NaCl + urea than into AIB-free control medium. The rate of efflux was greatly increased by the presence of hyperosmotic sucrose or very high Na+ (935 mmol/l).(ABSTRACT TRUNCATED AT 400 WORDS)

Full text

PDF
47

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Atherton J. C., Evans J. A., Green R., Thomas S. Influence of variations in hydration and in solute excretion of the effects of lysine-vasopressin infusion on urinary and renal tissue composition in the conscious rat. J Physiol. 1971 Mar;213(2):311–327. doi: 10.1113/jphysiol.1971.sp009384. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Beck F., Dörge A., Rick R., Thurau K. Intra- and extracellular element concentrations of rat renal papilla in antidiuresis. Kidney Int. 1984 Feb;25(2):397–403. doi: 10.1038/ki.1984.30. [DOI] [PubMed] [Google Scholar]
  3. Beck F., Dörge A., Rick R., Thurau K. Osmoregulation of renal papillary cells. Pflugers Arch. 1985;405 (Suppl 1):S28–S32. doi: 10.1007/BF00581776. [DOI] [PubMed] [Google Scholar]
  4. Boron W. F., Sackin H. Measurement of intracellular ionic composition and activities in renal tubules. Annu Rev Physiol. 1983;45:483–496. doi: 10.1146/annurev.ph.45.030183.002411. [DOI] [PubMed] [Google Scholar]
  5. Bulger R. E., Beeuwkes R., 3rd, Saubermann A. J. Application of scanning electron microscopy to x-ray analysis of frozen-hydrated sections. III. Elemental content of cells in the rat renal papillary tip. J Cell Biol. 1981 Feb;88(2):274–280. doi: 10.1083/jcb.88.2.274. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dani J. A., Sanchez J. A., Hille B. Lyotropic anions. Na channel gating and Ca electrode response. J Gen Physiol. 1983 Feb;81(2):255–281. doi: 10.1085/jgp.81.2.255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Davson H. The influence of the lyotropic series of anions on cation permeability. Biochem J. 1940 Jun;34(6):917–925. doi: 10.1042/bj0340917. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fugelli K., Thoroed S. M. Taurine transport associated with cell volume regulation in flounder erythrocytes under anisosmotic conditions. J Physiol. 1986 May;374:245–261. doi: 10.1113/jphysiol.1986.sp016077. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hai M. A., Thomas S. The time-course of changes in renal tissue composition during lysine vasopressin infusion in the rat. Pflugers Arch. 1969;310(4):297–317. doi: 10.1007/BF00587241. [DOI] [PubMed] [Google Scholar]
  10. Hoffmann E. K., Lambert I. H. Amino acid transport and cell volume regulation in Ehrlich ascites tumour cells. J Physiol. 1983 May;338:613–625. doi: 10.1113/jphysiol.1983.sp014692. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. JARAUSCH K. H., ULLRICH K. J. Untersuchungen zum Problem der Harnkonzentrierung und Harnverdünnung; Uber die Verteilung von Elektrolyten (Na, K, Ca, Mg, Cl, anorganischem Phosphat), Harnstoff, Aminosäuren und exogenem Kreatinin in Rinde und Mark der Hundeniere bei verschiedenen Diuresezuständen. Pflugers Arch. 1956;262(6):537–550. doi: 10.1007/BF00362116. [DOI] [PubMed] [Google Scholar]
  12. KREBS H. A. Body size and tissue respiration. Biochim Biophys Acta. 1950 Jan;4(1-3):249–269. doi: 10.1016/0006-3002(50)90032-1. [DOI] [PubMed] [Google Scholar]
  13. Larsson L., Aperia A., Lechene C. Ionic transport in individual renal epithelial cells from adult and young rats. Acta Physiol Scand. 1986 Mar;126(3):321–332. doi: 10.1111/j.1748-1716.1986.tb07823.x. [DOI] [PubMed] [Google Scholar]
  14. Law R. O., Rowen D. The influence of hyaluronidase on urinary and renal medullary composition following antidiuretic stimulus in the rat. J Physiol. 1981 Feb;311:341–354. doi: 10.1113/jphysiol.1981.sp013588. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Law R. O. Volume adjustment by renal medullary cells in hypo- and hyperosmolal solutions containing permeant and impermeant solutes. J Physiol. 1975 May;247(1):55–70. doi: 10.1113/jphysiol.1975.sp010920. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Macknight A. D., Leaf A. Regulation of cellular volume. Physiol Rev. 1977 Jul;57(3):510–573. doi: 10.1152/physrev.1977.57.3.510. [DOI] [PubMed] [Google Scholar]
  17. McIver D. J., Macknight A. D. Extracellular space in some isolated tissues. J Physiol. 1974 May;239(1):31–49. doi: 10.1113/jphysiol.1974.sp010554. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Robinson R. R., Owen E. E., Schmidt-Nielsen B. Intra-renal distribution of free amino acids in antidiuretic ruminants. Comp Biochem Physiol. 1966 Sep;19(1):187–195. doi: 10.1016/0010-406x(66)90559-7. [DOI] [PubMed] [Google Scholar]
  19. SAIKIA T. C. COMPOSITION OF THE RENAL CORTEX AND MEDULLA OF RATS DURING WATER DIURESIS AND ANTIDIURESIS. Q J Exp Physiol Cogn Med Sci. 1965 Apr;50:146–157. doi: 10.1113/expphysiol.1965.sp001777. [DOI] [PubMed] [Google Scholar]
  20. SCHMIDT-NIELSEN B., O'DELL R. Structure and concentrating mechanism in the mammalian kidney. Am J Physiol. 1961 Jun;200:1119–1124. doi: 10.1152/ajplegacy.1961.200.6.1119. [DOI] [PubMed] [Google Scholar]
  21. Saubermann A. J., Dobyan D. C., Scheid V. L., Bulger R. E. Rat renal papilla: comparison of two techniques for x-ray analysis. Kidney Int. 1986 Mar;29(3):675–681. doi: 10.1038/ki.1986.51. [DOI] [PubMed] [Google Scholar]
  22. Schultz S. G., Curran P. F. Coupled transport of sodium and organic solutes. Physiol Rev. 1970 Oct;50(4):637–718. doi: 10.1152/physrev.1970.50.4.637. [DOI] [PubMed] [Google Scholar]
  23. Wright E. M., Diamond J. M. Anion selectivity in biological systems. Physiol Rev. 1977 Jan;57(1):109–156. doi: 10.1152/physrev.1977.57.1.109. [DOI] [PubMed] [Google Scholar]
  24. Yancey P. H., Clark M. E., Hand S. C., Bowlus R. D., Somero G. N. Living with water stress: evolution of osmolyte systems. Science. 1982 Sep 24;217(4566):1214–1222. doi: 10.1126/science.7112124. [DOI] [PubMed] [Google Scholar]
  25. Yancey P. H., Somero G. N. Counteraction of urea destabilization of protein structure by methylamine osmoregulatory compounds of elasmobranch fishes. Biochem J. 1979 Nov 1;183(2):317–323. doi: 10.1042/bj1830317. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES