Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1968 Apr;107(4):497–506. doi: 10.1042/bj1070497

Enzymes of the mandelate pathway in bacterium N.C.I.B. 8250

S I T Kennedy 1,*, C A Fewson 1
PMCID: PMC1198693  PMID: 5660630

Abstract

1. Bacterium N.C.I.B. 8250 was grown on dl-mandelate, benzyl alcohol, benzoyl-formate, benzaldehyde and benzoate and also on 2-hydroxy, 4-hydroxy, 3,4-dihydroxy and 4-hydroxy-3-methoxy analogues of these compounds. The enzymic complements of the cells were determined and the specificities of some of the enzymes examined. 2. Growth on mandelate or benzoylformate induces l-mandelate dehydrogenase, benzoylformate decarboxylase, benzyl alcohol dehydrogenase and a heat-stable as well as a heat-labile benzaldehyde dehydrogenase. Growth on benzyl alcohol or benzaldehyde induces benzyl alcohol dehydrogenase and the heat-labile benzaldehyde dehydrogenase. 3. The enzymes of the mandelate-to-benzoate pathway are non-specifically active on, and induced by, all the substituted analogues that support growth. 4. Benzoate oxidase is induced by growth on benzoate or on 2-hydroxybenzoate. 2-Hydroxybenzoate hydroxylase, 4-hydroxybenzoate hydroxylase and 4-hydroxy-3-methoxybenzoate O-demethylase are induced only by growth on homologous substrates. 5. The results of the investigation are discussed with regard to the possible regulation of the enzyme systems.

Full text

PDF
505

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. CAIN R. B. The metabolism of protocatechuic acid by a vibrio. Biochem J. 1961 May;79:298–312. doi: 10.1042/bj0790298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cánovas J. L., Ornston L. N., Stanier R. Y. Evolutionary significance of metabolic control systems. The beta-ketoadipate pathway provides a case history in bacteria. Science. 1967 Jun 30;156(3783):1695–1699. doi: 10.1126/science.156.3783.1695. [DOI] [PubMed] [Google Scholar]
  3. Cánovas J. L., Stanier R. Y. Regulation of the enzymes of the beta-ketoadipate pathway in Moraxella calcoacetica. 1. General aspects. Eur J Biochem. 1967 May;1(3):289–300. doi: 10.1007/978-3-662-25813-2_40. [DOI] [PubMed] [Google Scholar]
  4. Fewson C. A. The growth and metabolic versatility of the gram-negative Bacterium NCIB 8250 ("Vibrio 01"). J Gen Microbiol. 1967 Feb;46(2):255–266. doi: 10.1099/00221287-46-2-255. [DOI] [PubMed] [Google Scholar]
  5. GUNSALUS C. F., STANIER R. Y., GUNSALUS I. C. The enzymatic conversion of mandelic acid to benzoic acid. III. Fractionation and properties of the soluble enzymes. J Bacteriol. 1953 Nov;66(5):548–553. doi: 10.1128/jb.66.5.548-553.1953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. GUNTER S. E. The enzymatic oxidation of p-hydroxymandelic acid to p-hydroxybenzoic acid. J Bacteriol. 1953 Sep;66(3):341–346. doi: 10.1128/jb.66.3.341-346.1953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hegeman G. D. Synthesis of the enzymes of the mandelate pathway by Pseudomonas putida. 3. Isolation and properties of constitutive mutants. J Bacteriol. 1966 Mar;91(3):1161–1167. doi: 10.1128/jb.91.3.1161-1167.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hegeman G. D. Synthesis of the enzymes of the mandelate pathway by Pseudomonas putida. I. Synthesis of enzymes by the wild type. J Bacteriol. 1966 Mar;91(3):1140–1154. doi: 10.1128/jb.91.3.1140-1154.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hegeman G. D. Synthesis of the enzymes of the mandelate pathway by Pseudomonas putida. II. Isolation and properties of blocked mutants. J Bacteriol. 1966 Mar;91(3):1155–1160. doi: 10.1128/jb.91.3.1155-1160.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hosokawa K., Stanier R. Y. Crystallization and properties of p-hydroxybenzoate hydroxylase from Pseudomonas putida. J Biol Chem. 1966 May 25;241(10):2453–2460. [PubMed] [Google Scholar]
  11. KOJIMA Y., ITADA N., HAYAISHI O. Metapyrocatachase: a new catechol-cleaving enzyme. J Biol Chem. 1961 Aug;236:2223–2228. [PubMed] [Google Scholar]
  12. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  13. MAAS W. K., MCFALL E. GENETIC ASPECTS OF METABOLIC CONTROL. Annu Rev Microbiol. 1964;18:95–110. doi: 10.1146/annurev.mi.18.100164.000523. [DOI] [PubMed] [Google Scholar]
  14. ORNSTON L. N., STANIER R. Y. MECHANISM OF BETA-KETOADIPATE FORMATION BY BACTERIA. Nature. 1964 Dec 26;204:1279–1283. doi: 10.1038/2041279a0. [DOI] [PubMed] [Google Scholar]
  15. Pankhurst E. S. A spot test for catechol 2:3-oxygenase in bacteria. J Appl Bacteriol. 1965 Aug;28(2):309–315. doi: 10.1111/j.1365-2672.1965.tb02158.x. [DOI] [PubMed] [Google Scholar]
  16. SEBALD M., VERON M. TENEUR EN BASES DE L'ADN ET CLASSIFICATION DES VIBRIONS. Ann Inst Pasteur (Paris) 1963 Nov;105:897–910. [PubMed] [Google Scholar]
  17. STANIER R. Y., GUNSALUS I. C., GUNSALUS C. F. The enzymatic conversion of mandelic acid to benzoic acid. II. Properties of the particulate fractions. J Bacteriol. 1953 Nov;66(5):543–547. doi: 10.1128/jb.66.5.543-547.1953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. STANIER R. Y., INGRAHAM J. L. Protocatechuic acid oxidase. J Biol Chem. 1954 Oct;210(2):799–808. [PubMed] [Google Scholar]
  19. Stevenson I. L., Mandelstam J. Induction and multi-sensitive end-product repression in two converging pathways degrading aromatic substances in Pseudomonas fluorescens. Biochem J. 1965 Aug;96(2):354–362. doi: 10.1042/bj0960354. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Véron M. Taxonomie numériques de vibrions et de certaines bactéries comparables. II. Corrélation entre les similitudes phénétiques et la composition en bases de l'ADN. Ann Inst Pasteur (Paris) 1966 Dec;111(6):671–709. [PubMed] [Google Scholar]
  21. Weil-Malherbe H. Some properties of mandelate racemase from Pseudomonas fluorescens. Biochem J. 1966 Oct;101(1):169–175. doi: 10.1042/bj1010169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. YAMAMOTO S., KATAGIRI M., MAENO H., HAYAISHI O. SALICYLATE HYDROXYLASE, A MONOOXYGENASE REQUIRING FLAVIN ADENINE DINUCLEOTIDE. I. PURIFICATION AND GENERAL PROPERTIES. J Biol Chem. 1965 Aug;240:3408–3413. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES