Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1963 Dec;89(3):430–438. doi: 10.1042/bj0890430

The oxidation of l-malate by Pseudomonas sp

M J O Francis 1, D E Hughes 1, H L Kornberg 1, P J R Phizackerley 1
PMCID: PMC1202447  PMID: 14101961

Full text

PDF
438

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALEXANDER M., WILSON P. W. Intracellular distribution of tricarboxylic acid cycle enzymes in Azotobacter vinelandii. J Bacteriol. 1956 Feb;71(2):252–253. doi: 10.1128/jb.71.2.252-253.1956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BASSHAM J. A., BIRT L. M., HEMS R., LOENING U. E. Determination of the reduced and oxidized pyridine nucleotides in animal tissues. Biochem J. 1959 Nov;73:491–499. doi: 10.1042/bj0730491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. BURTON K. A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem J. 1956 Feb;62(2):315–323. doi: 10.1042/bj0620315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. COHN D. V. The enzymatic formation of oxalacetic acid by nonpyridine nucleotide malic dehydrogenase of Micrococcus lysodeikticus. J Biol Chem. 1958 Aug;233(2):299–304. [PubMed] [Google Scholar]
  5. DIXON G. H., KORNBERG H. L., LUND P. Purification and properties of malate synthetase. Biochim Biophys Acta. 1960 Jul 1;41:217–233. doi: 10.1016/0006-3002(60)90004-4. [DOI] [PubMed] [Google Scholar]
  6. EL HAWARY M. F. S., THOMPSON R. H. S. Separation and estimation of blood keto acids by paper chromatography. Biochem J. 1953 Feb;53(3):340–347. doi: 10.1042/bj0530340. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. GETZ G. S., BARTLEY W. The intracellular distribution of fatty acids in rat liver. The fatty acids of intracellular compartments. Biochem J. 1961 Feb;78:307–312. doi: 10.1042/bj0780307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. HUGHES D. E. A press for disrupting bacteria and other micro-organisms. Br J Exp Pathol. 1951 Apr;32(2):97–109. [PMC free article] [PubMed] [Google Scholar]
  9. HUGHES D. E. The bacterial cytoplasmic membrane. J Gen Microbiol. 1962 Sep;29:39–46. doi: 10.1099/00221287-29-1-39. [DOI] [PubMed] [Google Scholar]
  10. HUNT A. L., RODGERS A., HUGHES D. E. Sub-cellular particles and the nicotinic acid hydroxylase system in extracts of. Biochim Biophys Acta. 1959 Aug;34:354–372. doi: 10.1016/0006-3002(59)90288-4. [DOI] [PubMed] [Google Scholar]
  11. KOGUT M., PODOSKI E. P. Oxidative pathways in a fluorescent Pseudomonas. Biochem J. 1953 Dec;55(5):800–811. doi: 10.1042/bj0550800. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. KORNBERG H. L., ELSDEN S. R. The metabolism of 2-carbon compounds by microorganisms. Adv Enzymol Relat Subj Biochem. 1961;23:401–470. doi: 10.1002/9780470122686.ch8. [DOI] [PubMed] [Google Scholar]
  13. KORNBERG H. L., GOTTO A. M. The metabolism of C2 compounds in micro-organisms. 6. Synthesis of cell constituents from glycollate by Pseudomonas sp. Biochem J. 1961 Jan;78:69–82. doi: 10.1042/bj0780069. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. KORNBERG H. L., MADSEN N. B. The metabolism of C2 compounds in microorganisms. 3. Synthesis of malate from acetate via the glyoxylate cycle. Biochem J. 1958 Mar;68(3):549–557. doi: 10.1042/bj0680549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. KORNBERG H. L. The metabolism of C2 compounds in micro-organisms. I. The incorporation of [2-14C] acetate by Pseudomonas fluorescens, and by a Corynebacterium, grown on ammonium acetate. Biochem J. 1958 Mar;68(3):535–542. doi: 10.1042/bj0680535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. LINNANE A. W., STILL J. L. The intracellular distribution of enzymes in Serratia marcescens. Biochim Biophys Acta. 1955 Feb;16(2):305–306. doi: 10.1016/0006-3002(55)90230-4. [DOI] [PubMed] [Google Scholar]
  17. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  18. PEARSE A. G. Intracellular localisation of dehydrogenase systems using monotetrazolium salts and metal chelation of their formazans. J Histochem Cytochem. 1957 Sep;5(5):515–527. doi: 10.1177/5.5.515. [DOI] [PubMed] [Google Scholar]
  19. PUMPHREY A. M., REDFEARN E. R. INHIBITION OF SUCCINATE OXIDATION BY BARBITURATES IN TIGHTLY COUPLED MITOCHONDRIA. Biochim Biophys Acta. 1963 Aug 13;74:317–327. doi: 10.1016/0006-3002(63)91375-1. [DOI] [PubMed] [Google Scholar]
  20. SINGER T. P., KEARNEY E. B. Determination of succinic dehydrogenase activity. Methods Biochem Anal. 1957;4:307–333. doi: 10.1002/9780470110201.ch9. [DOI] [PubMed] [Google Scholar]
  21. STANIER R. Y., GUNSALUS I. C., GUNSALUS C. F. The enzymatic conversion of mandelic acid to benzoic acid. II. Properties of the particulate fractions. J Bacteriol. 1953 Nov;66(5):543–547. doi: 10.1128/jb.66.5.543-547.1953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. VILLEE C. A. An enzymic method for the assay of pyridine nucleotides in extracts of animal tissues. Biochem J. 1962 Apr;83:191–194. doi: 10.1042/bj0830191. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES