Abstract
Restriction endonuclease analysis of mtDNA was used to examine the genetic relatedness of several geographically separated isolines of the Drosophila mercatorum subgroup. In addition, we examined the temporal and spatial distribution of two mtDNA restriction site polymorphisms produced by the enzymes BstEII and BstNI at a single locality—Kamuela, Hawaii. Due to small sample sizes of some collections and the undesirable dependance of the estimation of polymorphism frequency on its variance, an arcsin square root transformation of the frequency data was used. We also use an Fst estimator of our transformed frequencies to demonstrate considerable spatial and temporal differentiation within the Kamuela population. In contrast, isozyme data from the same population reveals no pattern of differentiation. The temporal and geographic heterogeneity and population subdivision detected with mtDNA analysis also is consistent with the known dispersal behavior and ecological constraints of this species. The mtDNA data in conjunction with the isozyme data show that the population structure of the Kamuela D. mercatorum is close to the boundary line separating panmixia from subdivision, a conclusion that could not be made from isozyme data alone.
Full Text
The Full Text of this article is available as a PDF (1.5 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Avise J. C., Lansman R. A., Shade R. O. The use of restriction endonucleases to measure mitochondrial DNA sequence relatedness in natural populations. I. Population structure and evolution in the genus Peromyscus. Genetics. 1979 May;92(1):279–295. doi: 10.1093/genetics/92.1.279. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown W. M., George M., Jr, Wilson A. C. Rapid evolution of animal mitochondrial DNA. Proc Natl Acad Sci U S A. 1979 Apr;76(4):1967–1971. doi: 10.1073/pnas.76.4.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clary D. O., Goddard J. M., Martin S. C., Fauron C. M., Wolstenholme D. R. Drosophila mitochondrial DNA: a novel gene order. Nucleic Acids Res. 1982 Nov 11;10(21):6619–6637. doi: 10.1093/nar/10.21.6619. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Coen E. S., Thoday J. M., Dover G. Rate of turnover of structural variants in the rDNA gene family of Drosophila melanogaster. Nature. 1982 Feb 18;295(5850):564–568. doi: 10.1038/295564a0. [DOI] [PubMed] [Google Scholar]
- DeSalle R., Giddings L. V., Kaneshiro K. Y. Mitochondrial DNA variability in natural populations of Hawaiian Drosophila. II. Genetic and phylogenetic relationships of natural populations of D. silvestris and D. heteroneura. Heredity (Edinb) 1986 Feb;56(Pt 1):87–96. doi: 10.1038/hdy.1986.12. [DOI] [PubMed] [Google Scholar]
- Ferris S. D., Wilson A. C., Brown W. M. Evolutionary tree for apes and humans based on cleavage maps of mitochondrial DNA. Proc Natl Acad Sci U S A. 1981 Apr;78(4):2432–2436. doi: 10.1073/pnas.78.4.2432. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hudson R. R. Estimating genetic variability with restriction endonucleases. Genetics. 1982 Apr;100(4):711–719. doi: 10.1093/genetics/100.4.711. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maruyama T., Kimura M. Geographical unifromity of selectively neutral polymorphisms. Nature. 1974 May 3;249(452):30–32. doi: 10.1038/249030a0. [DOI] [PubMed] [Google Scholar]
- Templeton A. R., Carson H. L., Sing C. F. The population genetics of parthenogenetic strains of Drosophila mercatorium. II The capacity for parthenogenesis in a natural, bisexual population. Genetics. 1976 Mar 25;82(3):527–542. doi: 10.1093/genetics/82.3.527. [DOI] [PMC free article] [PubMed] [Google Scholar]