Skip to main content
Genetics logoLink to Genetics
. 1994 Jan;136(1):361–381. doi: 10.1093/genetics/136.1.361

Geographical Variation in a Quantitative Character

T Nagylaki 1
PMCID: PMC1205786  PMID: 8138171

Abstract

A model for the evolution of the local averages of a quantitative character under migration, selection, and random genetic drift in a subdivided population is formulated and investigated. Generations are discrete and nonoverlapping; the monoecious, diploid population mates at random in each deme. All three evolutionary forces are weak, but the migration pattern and the local population numbers are otherwise arbitrary. The character is determined by purely additive gene action and a stochastically independent environment; its distribution is Gaussian with a constant variance; and it is under Gaussian stabilizing selection with the same parameters in every deme. Linkage disequilibrium is neglected. Most of the results concern the covariances of the local averages. For a finite number of demes, explicit formulas are derived for (i) the asymptotic rate and pattern of convergence to equilibrium, (ii) the variance of a suitably weighted average of the local averages, and (iii) the equilibrium covariances when selection and random drift are much weaker than migration. Essentially complete analyses of equilibrium and convergence are presented for random outbreeding and site homing, the Levene and island models, the circular habitat and the unbounded linear stepping-stone model in the diffusion approximation, and the exact unbounded stepping-stone model in one and two dimensions.

Full Text

The Full Text of this article is available as a PDF (1.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barton N. H., Turelli M. Natural and sexual selection on many loci. Genetics. 1991 Jan;127(1):229–255. doi: 10.1093/genetics/127.1.229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Boucher W., Nagylaki T. Regular systems of inbreeding. J Math Biol. 1988;26(2):121–142. doi: 10.1007/BF00277729. [DOI] [PubMed] [Google Scholar]
  3. Bulmer M. G. Stable equilibria under the migration matrix model. Heredity (Edinb) 1971 Dec;27(3):419–430. doi: 10.1038/hdy.1971.105. [DOI] [PubMed] [Google Scholar]
  4. Bulmer M. G. Stable equilibria under the two-island model. Heredity (Edinb) 1971 Dec;27(3):321–330. doi: 10.1038/hdy.1971.97. [DOI] [PubMed] [Google Scholar]
  5. DEMPSTER E. R. Maintenance of genetic heterogeneity. Cold Spring Harb Symp Quant Biol. 1955;20:25-31; discussion, 31-2. doi: 10.1101/sqb.1955.020.01.005. [DOI] [PubMed] [Google Scholar]
  6. Fleming W. H., Su C. H. Some one-dimensional migration models in population genetics theory. Theor Popul Biol. 1974 Jun;5(3):431–449. doi: 10.1016/0040-5809(74)90062-8. [DOI] [PubMed] [Google Scholar]
  7. Hastings A. Second-order approximations for selection coefficients at polygenic loci. J Math Biol. 1990;28(4):475–483. doi: 10.1007/BF00178330. [DOI] [PubMed] [Google Scholar]
  8. Kimura M., Crow J. F. Effect of overall phenotypic selection on genetic change at individual loci. Proc Natl Acad Sci U S A. 1978 Dec;75(12):6168–6171. doi: 10.1073/pnas.75.12.6168. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lande R. Isolation by distance in a quantitative trait. Genetics. 1991 Jun;128(2):443–452. doi: 10.1093/genetics/128.2.443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Malécot G. Heterozygosity and relationship in regularly subdivided populations. Theor Popul Biol. 1975 Oct;8(2):212–241. doi: 10.1016/0040-5809(75)90033-7. [DOI] [PubMed] [Google Scholar]
  11. Maruyama T. Effective number of alleles in a subdivided population. Theor Popul Biol. 1970 Nov;1(3):273–306. doi: 10.1016/0040-5809(70)90047-x. [DOI] [PubMed] [Google Scholar]
  12. Nagylaki T. Genetic structure of a population occupying a circular habitat. Genetics. 1974 Oct;78(2):777–790. doi: 10.1093/genetics/78.2.777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Nagylaki T. Geographical invariance in population genetics. J Theor Biol. 1982 Nov 7;99(1):159–172. doi: 10.1016/0022-5193(82)90396-4. [DOI] [PubMed] [Google Scholar]
  14. Nagylaki T. Gustave Malécot and the transition from classical to modern population genetics. Genetics. 1989 Jun;122(2):253–268. doi: 10.1093/genetics/122.2.253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Nagylaki T. The decay of genetic variability in geographically structured populations. II. Theor Popul Biol. 1976 Aug;10(1):70–82. doi: 10.1016/0040-5809(76)90006-x. [DOI] [PubMed] [Google Scholar]
  16. Nagylaki T. The decay of genetic variability in geographically structured populations. Proc Natl Acad Sci U S A. 1974 Aug;71(8):2932–2936. doi: 10.1073/pnas.71.8.2932. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Nagylaki T. The evolution of multilocus systems under weak selection. Genetics. 1993 Jun;134(2):627–647. doi: 10.1093/genetics/134.2.627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Nagylaki T. The strong-migration limit in geographically structured populations. J Math Biol. 1980 Apr;9(2):101–114. doi: 10.1007/BF00275916. [DOI] [PubMed] [Google Scholar]
  19. Sawyer S., Felsenstein J. A continuous migration model with stable demography. J Math Biol. 1981 Feb;11(2):193–205. doi: 10.1007/BF00275442. [DOI] [PubMed] [Google Scholar]
  20. Slatkin M. Spatial patterns in the distributions of polygenic characters. J Theor Biol. 1978 Jan 20;70(2):213–228. doi: 10.1016/0022-5193(78)90348-x. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES