Abstract
Restriction map variation in two 5-6-kb chloroplast DNA regions of five diploid Aegilops species in the section Sitopsis and two wild tetraploid wheats, Triticum dicoccoides and Triticum araraticum, was investigated with a battery of four-cutter restriction enzymes. A single accession each of Triticum durum, Triticum timopheevi and Triticum aestivum was included as a reference. More than 250 restriction sites were scored, of which only seven sites were found polymorphic in Aegilops speltoides. No restriction site polymorphisms were detected in all of the other diploid and tetraploid species. In addition, six insertion/deletion polymorphisms were detected, but they were mostly unique or species-specific. Estimated nucleotide diversity was 0.0006 for A. speltoides, and 0.0000 for all the other investigated species. In A. speltoides, none of Tajima's D values was significant, indicating no clear deviation from the neutrality of molecular polymorphisms. Significant non-random association was detected for three combinations out of 10 possible pairs between polymorphic restriction sites in A. speltoides. Phylogenetic relationship among all the plastotypes (plastid genotype) suggested the diphyletic origin of T. dicoccoides and T. araraticum. A plastotype of one A. speltoides accession was identical to the major type of T. araraticum (T. timopheevi inclusively). Three of the plastotypes found in the Sitopsis species are very similar, but not identical, to that of T. dicoccoides, T. durum and T. aestivum.
Full Text
The Full Text of this article is available as a PDF (1.9 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aquadro C. F., Desse S. F., Bland M. M., Langley C. H., Laurie-Ahlberg C. C. Molecular population genetics of the alcohol dehydrogenase gene region of Drosophila melanogaster. Genetics. 1986 Dec;114(4):1165–1190. doi: 10.1093/genetics/114.4.1165. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Aquadro C. F. Why is the genome variable? Insights from Drosophila. Trends Genet. 1992 Oct;8(10):355–362. doi: 10.1016/0168-9525(92)90281-8. [DOI] [PubMed] [Google Scholar]
- Dvorák J., Zhang H. B. Variation in repeated nucleotide sequences sheds light on the phylogeny of the wheat B and G genomes. Proc Natl Acad Sci U S A. 1990 Dec 15;87(24):9640–9644. doi: 10.1073/pnas.87.24.9640. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Golding G. B., Aquadro C. F., Langley C. H. Sequence evolution within populations under multiple types of mutation. Proc Natl Acad Sci U S A. 1986 Jan;83(2):427–431. doi: 10.1073/pnas.83.2.427. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hird S. M., Webber A. N., Wilson R. J., Dyer T. A., Gray J. C. Differential expression of the psbB and psbH genes encoding the 47 kDa chlorophyll a-protein and the 10 kDa phosphoprotein of photosystem II during chloroplast development in wheat. Curr Genet. 1991 Mar;19(3):199–206. doi: 10.1007/BF00336487. [DOI] [PubMed] [Google Scholar]
- Hudson R. R. Estimating genetic variability with restriction endonucleases. Genetics. 1982 Apr;100(4):711–719. doi: 10.1093/genetics/100.4.711. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kreitman M., Aguadé M. Genetic uniformity in two populations of Drosophila melanogaster as revealed by filter hybridization of four-nucleotide-recognizing restriction enzyme digests. Proc Natl Acad Sci U S A. 1986 May;83(10):3562–3566. doi: 10.1073/pnas.83.10.3562. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liu Y. G., Mori N., Tsunewaki K. Restriction fragment length polymorphism (RFLP) analysis in wheat. I. Genomic DNA library construction and RFLP analysis in common wheat. Jpn J Genet. 1990 Oct;65(5):367–380. doi: 10.1266/jjg.65.367. [DOI] [PubMed] [Google Scholar]
- McDonald J. H., Kreitman M. Adaptive protein evolution at the Adh locus in Drosophila. Nature. 1991 Jun 20;351(6328):652–654. doi: 10.1038/351652a0. [DOI] [PubMed] [Google Scholar]
- Miyashita N. T. Molecular and phenotypic variation of the Zw locus region in Drosophila melanogaster. Genetics. 1990 Jun;125(2):407–419. doi: 10.1093/genetics/125.2.407. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nei M., Li W. H. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci U S A. 1979 Oct;76(10):5269–5273. doi: 10.1073/pnas.76.10.5269. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ogihara Y., Terachi T., Sasakuma T. Intramolecular recombination of chloroplast genome mediated by short direct-repeat sequences in wheat species. Proc Natl Acad Sci U S A. 1988 Nov;85(22):8573–8577. doi: 10.1073/pnas.85.22.8573. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ogihara Y., Terachi T., Sasakuma T. Molecular analysis of the hot spot region related to length mutations in wheat chloroplast DNAs. I. Nucleotide divergence of genes and intergenic spacer regions located in the hot spot region. Genetics. 1991 Nov;129(3):873–884. doi: 10.1093/genetics/129.3.873. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tajima F. Evolutionary relationship of DNA sequences in finite populations. Genetics. 1983 Oct;105(2):437–460. doi: 10.1093/genetics/105.2.437. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics. 1989 Nov;123(3):585–595. doi: 10.1093/genetics/123.3.585. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takahata N., Nei M. Gene genealogy and variance of interpopulational nucleotide differences. Genetics. 1985 Jun;110(2):325–344. doi: 10.1093/genetics/110.2.325. [DOI] [PMC free article] [PubMed] [Google Scholar]