Abstract
The properties of gene and allelic genealogies at a gametophytic self-incompatibility locus in plants have been investigated analytically and checked against extensive numerical simulations. It is found that, as with overdominant loci, there are two genealogical processes with markedly different time scales. First, functionally distinct allelic lines diverge on an extremely long time scale which is inversely related to the mutation rate to new alleles. These alleles show a genealogical structure which is similar, after an appropriate rescaling of time, to that described by the coalescent process for genes at a neutral locus. Second, gene copies sampled within the same functional allelic line show genealogical relationships similar to neutral gene genealogies but on a much shorter time scale, which is on the same order of magnitude as the harmonic mean of the number of gene copies within an allelic line. These results are discussed in relation to data showing trans-specific polymorphisms for alleles at the gametophytic self-incompatibility locus in the Solanaceae. It is shown that population sizes on the order of 4 X 10(5) and a mutation rate per locus per generation as high as 10(-6) could account for estimated allelic divergence times in this family.
Full Text
The Full Text of this article is available as a PDF (945.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Atwood S S. Oppositional Alleles in Natural Populations of Trifolium Repens. Genetics. 1944 Sep;29(5):428–435. doi: 10.1093/genetics/29.5.428. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Emerson S. A Preliminary Survey of the Oenothera Organensis Population. Genetics. 1939 Jun;24(4):524–537. doi: 10.1093/genetics/24.4.524. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ewens W. J., Ewens P. M. The maintenance of alleles by mutation--Monte Carlo results for normal and self-sterility populations. Heredity (Edinb) 1966 Aug;21(3):371–378. doi: 10.1038/hdy.1966.38. [DOI] [PubMed] [Google Scholar]
- Hudson R. R., Kaplan N. L. On the divergence of alleles in nested subsamples from finite populations. Genetics. 1986 Aug;113(4):1057–1076. doi: 10.1093/genetics/113.4.1057. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hughes A. L., Nei M. Pattern of nucleotide substitution at major histocompatibility complex class I loci reveals overdominant selection. Nature. 1988 Sep 8;335(6186):167–170. doi: 10.1038/335167a0. [DOI] [PubMed] [Google Scholar]
- Ioerger T. R., Clark A. G., Kao T. H. Polymorphism at the self-incompatibility locus in Solanaceae predates speciation. Proc Natl Acad Sci U S A. 1990 Dec;87(24):9732–9735. doi: 10.1073/pnas.87.24.9732. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KIMURA M., CROW J. F. THE NUMBER OF ALLELES THAT CAN BE MAINTAINED IN A FINITE POPULATION. Genetics. 1964 Apr;49:725–738. doi: 10.1093/genetics/49.4.725. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maruyama T., Nei M. Genetic variability maintained by mutation and overdominant selection in finite populations. Genetics. 1981 Jun;98(2):441–459. doi: 10.1093/genetics/98.2.441. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nei M. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics. 1978 Jul;89(3):583–590. doi: 10.1093/genetics/89.3.583. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rivers B. A., Bernatzky R., Robinson S. J., Jahnen-Dechent W. Molecular diversity at the self-incompatibility locus is a salient feature in natural populations of wild tomato (Lycopersicon peruvianum). Mol Gen Genet. 1993 Apr;238(3):419–427. doi: 10.1007/BF00292001. [DOI] [PubMed] [Google Scholar]
- Slatkin M., Hudson R. R. Pairwise comparisons of mitochondrial DNA sequences in stable and exponentially growing populations. Genetics. 1991 Oct;129(2):555–562. doi: 10.1093/genetics/129.2.555. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Steinhaus J. E., Epstein R. M., Hamilton W. K., Larson C. P., Jr, Lawrence R. M. A survey of academic anesthesiology. Submitted by ASA Subcommittee (Task Force) on Academic Anesthesia Manpower. Anesthesiology. 1977 Jul;47(1):53–61. [PubMed] [Google Scholar]
- Tajima F. Evolutionary relationship of DNA sequences in finite populations. Genetics. 1983 Oct;105(2):437–460. doi: 10.1093/genetics/105.2.437. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tajima F. Relationship between DNA polymorphism and fixation time. Genetics. 1990 Jun;125(2):447–454. doi: 10.1093/genetics/125.2.447. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics. 1989 Nov;123(3):585–595. doi: 10.1093/genetics/123.3.585. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takahata N. A simple genealogical structure of strongly balanced allelic lines and trans-species evolution of polymorphism. Proc Natl Acad Sci U S A. 1990 Apr;87(7):2419–2423. doi: 10.1073/pnas.87.7.2419. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takahata N., Satta Y., Klein J. Polymorphism and balancing selection at major histocompatibility complex loci. Genetics. 1992 Apr;130(4):925–938. doi: 10.1093/genetics/130.4.925. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wright S. The Distribution of Self-Sterility Alleles in Populations. Genetics. 1939 Jun;24(4):538–552. doi: 10.1093/genetics/24.4.538. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yokoyama S., Nei M. Population dynamics of sex-determining alleles in honey bees and self-incompatibility alleles in plants. Genetics. 1979 Mar;91(3):609–626. doi: 10.1093/genetics/91.3.609. [DOI] [PMC free article] [PubMed] [Google Scholar]