Abstract
Understanding which genes contribute to evolutionary change and the nature of the alterations in them are fundamental challenges in evolution. We analyzed regulatory and enzymatic genes in the maize anthocyanin pathway as related to the evolution of anthocyanin-pigmented kernels in maize from colorless kernels of its progenitor, teosinte. Genetic tests indicate that teosinte possesses functional alleles at all enzymatic loci. At two regulatory loci, most teosintes possess alleles that encode functional proteins, but ones that are not expressed during kernel development and not capable of activating anthocyanin biosynthesis there. We investigated nucleotide polymorphism at one of the regulatory loci, c1. Several observations suggest that c1 has not evolved in a strictly neutral manner, including an exceptionally low level of polymorphism and a biased representation of haplotypes in maize. Curiously, sequence data show that most of our teosinte samples possess a promoter element necessary for the activation of the anthocyanin pathway during kernel development, although genetic tests indicate that teosinte c1 alleles are not active during kernel development. Our analyses suggest that the evolution of the purple kernels resulted from changes in cis regulatory elements at regulatory loci and not changes in either regulatory protein function nor the enzymatic loci.
Full Text
The Full Text of this article is available as a PDF (2.7 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Braverman J. M., Hudson R. R., Kaplan N. L., Langley C. H., Stephan W. The hitchhiking effect on the site frequency spectrum of DNA polymorphisms. Genetics. 1995 Jun;140(2):783–796. doi: 10.1093/genetics/140.2.783. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen S. M., Coe E. H., Jr Control of anthocyanin synthesis by the C locus in maize. Biochem Genet. 1977 Apr;15(3-4):333–346. doi: 10.1007/BF00484464. [DOI] [PubMed] [Google Scholar]
- Cocciolone S. M., Cone K. C. Pl-Bh, an anthocyanin regulatory gene of maize that leads to variegated pigmentation. Genetics. 1993 Oct;135(2):575–588. doi: 10.1093/genetics/135.2.575. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Doebley J., Renfroe W., Blanton A. Restriction site variation in the zea chloroplast genome. Genetics. 1987 Sep;117(1):139–147. doi: 10.1093/genetics/117.1.139. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dooner H. K., Robbins T. P., Jorgensen R. A. Genetic and developmental control of anthocyanin biosynthesis. Annu Rev Genet. 1991;25:173–199. doi: 10.1146/annurev.ge.25.120191.001133. [DOI] [PubMed] [Google Scholar]
- Gaut B. S., Clegg M. T. Molecular evolution of alcohol dehydrogenase 1 in members of the grass family. Proc Natl Acad Sci U S A. 1991 Mar 15;88(6):2060–2064. doi: 10.1073/pnas.88.6.2060. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gaut B. S., Clegg M. T. Molecular evolution of the Adh1 locus in the genus Zea. Proc Natl Acad Sci U S A. 1993 Jun 1;90(11):5095–5099. doi: 10.1073/pnas.90.11.5095. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goff S. A., Cone K. C., Fromm M. E. Identification of functional domains in the maize transcriptional activator C1: comparison of wild-type and dominant inhibitor proteins. Genes Dev. 1991 Feb;5(2):298–309. doi: 10.1101/gad.5.2.298. [DOI] [PubMed] [Google Scholar]
- Goloubinoff P., Päbo S., Wilson A. C. Evolution of maize inferred from sequence diversity of an Adh2 gene segment from archaeological specimens. Proc Natl Acad Sci U S A. 1993 Mar 1;90(5):1997–2001. doi: 10.1073/pnas.90.5.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hattori T., Vasil V., Rosenkrans L., Hannah L. C., McCarty D. R., Vasil I. K. The Viviparous-1 gene and abscisic acid activate the C1 regulatory gene for anthocyanin biosynthesis during seed maturation in maize. Genes Dev. 1992 Apr;6(4):609–618. doi: 10.1101/gad.6.4.609. [DOI] [PubMed] [Google Scholar]
- Holton T. A., Cornish E. C. Genetics and Biochemistry of Anthocyanin Biosynthesis. Plant Cell. 1995 Jul;7(7):1071–1083. doi: 10.1105/tpc.7.7.1071. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hudson R. R., Boos D. D., Kaplan N. L. A statistical test for detecting geographic subdivision. Mol Biol Evol. 1992 Jan;9(1):138–151. doi: 10.1093/oxfordjournals.molbev.a040703. [DOI] [PubMed] [Google Scholar]
- Hudson R. R., Kaplan N. L. Statistical properties of the number of recombination events in the history of a sample of DNA sequences. Genetics. 1985 Sep;111(1):147–164. doi: 10.1093/genetics/111.1.147. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hudson R. R., Kreitman M., Aguadé M. A test of neutral molecular evolution based on nucleotide data. Genetics. 1987 May;116(1):153–159. doi: 10.1093/genetics/116.1.153. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Iltis H. H. From teosinte to maize: the catastrophic sexual transmutation. Science. 1983 Nov 25;222(4626):886–894. doi: 10.1126/science.222.4626.886. [DOI] [PubMed] [Google Scholar]
- Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol. 1980 Dec;16(2):111–120. doi: 10.1007/BF01731581. [DOI] [PubMed] [Google Scholar]
- Leicht B. G., Muse S. V., Hanczyc M., Clark A. G. Constraints on intron evolution in the gene encoding the myosin alkali light chain in Drosophila. Genetics. 1995 Jan;139(1):299–308. doi: 10.1093/genetics/139.1.299. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McCarty D. R., Carson C. B., Stinard P. S., Robertson D. S. Molecular Analysis of viviparous-1: An Abscisic Acid-Insensitive Mutant of Maize. Plant Cell. 1989 May;1(5):523–532. doi: 10.1105/tpc.1.5.523. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Patterson G. I., Kubo K. M., Shroyer T., Chandler V. L. Sequences required for paramutation of the maize b gene map to a region containing the promoter and upstream sequences. Genetics. 1995 Aug;140(4):1389–1406. doi: 10.1093/genetics/140.4.1389. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Radicella J. P., Brown D., Tolar L. A., Chandler V. L. Allelic diversity of the maize B regulatory gene: different leader and promoter sequences of two B alleles determine distinct tissue specificities of anthocyanin production. Genes Dev. 1992 Nov;6(11):2152–2164. doi: 10.1101/gad.6.11.2152. [DOI] [PubMed] [Google Scholar]
- Saitou N., Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987 Jul;4(4):406–425. doi: 10.1093/oxfordjournals.molbev.a040454. [DOI] [PubMed] [Google Scholar]
- Scheffler B., Franken P., Schütt E., Schrell A., Saedler H., Wienand U. Molecular analysis of C1 alleles in Zea mays defines regions involved in the expression of this regulatory gene. Mol Gen Genet. 1994 Jan;242(1):40–48. doi: 10.1007/BF00277346. [DOI] [PubMed] [Google Scholar]
- Shattuck-Eidens D. M., Bell R. N., Neuhausen S. L., Helentjaris T. DNA sequence variation within maize and melon: observations from polymerase chain reaction amplification and direct sequencing. Genetics. 1990 Sep;126(1):207–217. doi: 10.1093/genetics/126.1.207. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics. 1989 Nov;123(3):585–595. doi: 10.1093/genetics/123.3.585. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wolfe K. H., Li W. H., Sharp P. M. Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proc Natl Acad Sci U S A. 1987 Dec;84(24):9054–9058. doi: 10.1073/pnas.84.24.9054. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zimmer E. A., Jupe E. R., Walbot V. Ribosomal gene structure, variation and inheritance in maize and its ancestors. Genetics. 1988 Dec;120(4):1125–1136. doi: 10.1093/genetics/120.4.1125. [DOI] [PMC free article] [PubMed] [Google Scholar]