Skip to main content
Genetics logoLink to Genetics
. 1997 May;146(1):409–416. doi: 10.1093/genetics/146.1.409

Estimation of Effects of Quantitative Trait Loci in Large Complex Pedigrees

THE Meuwissen 1, M E Goddard 1
PMCID: PMC1207956  PMID: 9136029

Abstract

A method was derived to estimate effects of quantitative trait loci (QTL) using incomplete genotype information in large outbreeding populations with complex pedigrees. The method accounts for background genes by estimating polygenic effects. The basic equations used are very similar to the usual linear mixed model equations for polygenic models, and segregation analysis was used to estimate the probabilities of the QTL genotypes for each animal. Method R was used to estimate the polygenic heritability simultaneously with the QTL effects. Also, initial allele frequencies were estimated. The method was tested in a simulated data set of 10,000 animals evenly distributed over 10 generations, where 0, 400 or 10,000 animals were genotyped for a candidate gene. In the absence of selection, the bias of the QTL estimates was <2%. Selection biased the estimate of the Aa genotype slightly, when zero animals were genotyped. Estimates of the polygenic heritability were 0.251 and 0.257, in absence and presence of selection, respectively, while the simulated value was 0.25. Although not tested in this study, marker information could be accommodated by adjusting the transmission probabilities of the genotypes from parent to offspring according to the marker information. This renders a QTL mapping study in large multi-generation pedigrees possible.

Full Text

The Full Text of this article is available as a PDF (766.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersson L., Haley C. S., Ellegren H., Knott S. A., Johansson M., Andersson K., Andersson-Eklund L., Edfors-Lilja I., Fredholm M., Hansson I. Genetic mapping of quantitative trait loci for growth and fatness in pigs. Science. 1994 Mar 25;263(5154):1771–1774. doi: 10.1126/science.8134840. [DOI] [PubMed] [Google Scholar]
  2. Churchill G. A., Doerge R. W. Empirical threshold values for quantitative trait mapping. Genetics. 1994 Nov;138(3):963–971. doi: 10.1093/genetics/138.3.963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Clerget-Darpoux F., Bonaïti-Pellié C., Hochez J. Effects of misspecifying genetic parameters in lod score analysis. Biometrics. 1986 Jun;42(2):393–399. [PubMed] [Google Scholar]
  4. Darvasi A., Soller M. Advanced intercross lines, an experimental population for fine genetic mapping. Genetics. 1995 Nov;141(3):1199–1207. doi: 10.1093/genetics/141.3.1199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Darvasi A., Weinreb A., Minke V., Weller J. I., Soller M. Detecting marker-QTL linkage and estimating QTL gene effect and map location using a saturated genetic map. Genetics. 1993 Jul;134(3):943–951. doi: 10.1093/genetics/134.3.943. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Elston R. C., Stewart J. A general model for the genetic analysis of pedigree data. Hum Hered. 1971;21(6):523–542. doi: 10.1159/000152448. [DOI] [PubMed] [Google Scholar]
  7. Guo S. W., Thompson E. A. A Monte Carlo method for combined segregation and linkage analysis. Am J Hum Genet. 1992 Nov;51(5):1111–1126. [PMC free article] [PubMed] [Google Scholar]
  8. Haley C. S., Knott S. A. A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity (Edinb) 1992 Oct;69(4):315–324. doi: 10.1038/hdy.1992.131. [DOI] [PubMed] [Google Scholar]
  9. Haley C. S., Knott S. A., Elsen J. M. Mapping quantitative trait loci in crosses between outbred lines using least squares. Genetics. 1994 Mar;136(3):1195–1207. doi: 10.1093/genetics/136.3.1195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hodge S. E., Elston R. C. Lods, wrods, and mods: the interpretation of lod scores calculated under different models. Genet Epidemiol. 1994;11(4):329–342. doi: 10.1002/gepi.1370110403. [DOI] [PubMed] [Google Scholar]
  11. Jansen R. C. Controlling the type I and type II errors in mapping quantitative trait loci. Genetics. 1994 Nov;138(3):871–881. doi: 10.1093/genetics/138.3.871. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Jansen R. C. Interval mapping of multiple quantitative trait loci. Genetics. 1993 Sep;135(1):205–211. doi: 10.1093/genetics/135.1.205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kinghorn B. P., Kennedy B. W., Smith C. A method of screening for genes of major effect. Genetics. 1993 May;134(1):351–360. doi: 10.1093/genetics/134.1.351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kong A., Wright F. Asymptotic theory for gene mapping. Proc Natl Acad Sci U S A. 1994 Oct 11;91(21):9705–9709. doi: 10.1073/pnas.91.21.9705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Paterson A. H., Lander E. S., Hewitt J. D., Peterson S., Lincoln S. E., Tanksley S. D. Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature. 1988 Oct 20;335(6192):721–726. doi: 10.1038/335721a0. [DOI] [PubMed] [Google Scholar]
  16. Reverter A., Golden B. L., Bourdon R. M., Brinks J. S. Method R variance components procedure: application on the simple breeding value model. J Anim Sci. 1994 Sep;72(9):2247–2253. doi: 10.2527/1994.7292247x. [DOI] [PubMed] [Google Scholar]
  17. Risch N., Giuffra L. Model misspecification and multipoint linkage analysis. Hum Hered. 1992;42(1):77–92. doi: 10.1159/000154047. [DOI] [PubMed] [Google Scholar]
  18. Stricker C., Fernando R. L., Elston R. C. Linkage analysis with an alternative formulation for the mixed model of inheritance: the finite polygenic mixed model. Genetics. 1995 Dec;141(4):1651–1656. doi: 10.1093/genetics/141.4.1651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Vieland V. J., Hodge S. E., Greenberg D. A. Adequacy of single-locus approximations for linkage analyses of oligogenic traits. Genet Epidemiol. 1992;9(1):45–59. doi: 10.1002/gepi.1370090106. [DOI] [PubMed] [Google Scholar]
  20. Williamson J. A., Amos C. I. Guess LOD approach: sufficient conditions for robustness. Genet Epidemiol. 1995;12(2):163–176. doi: 10.1002/gepi.1370120205. [DOI] [PubMed] [Google Scholar]
  21. Williamson J. A., Amos C. I. On the asymptotic behavior of the estimate of the recombination fraction under the null hypothesis of no linkage when the model is misspecified. Genet Epidemiol. 1990;7(5):309–318. doi: 10.1002/gepi.1370070502. [DOI] [PubMed] [Google Scholar]
  22. Zeng Z. B. Precision mapping of quantitative trait loci. Genetics. 1994 Apr;136(4):1457–1468. doi: 10.1093/genetics/136.4.1457. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES