Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Jul 15;317(Pt 2):549–555. doi: 10.1042/bj3170549

Secondary structure of NADPH: protochlorophyllide oxidoreductase examined by circular dichroism and prediction methods.

S J Birve 1, E Selstam 1, L B Johansson 1
PMCID: PMC1217521  PMID: 8713084

Abstract

To study the secondary structure of the enzyme NADPH: protochlorophyllide oxidoreductase (PCOR), a novel method of enzyme isolation was developed. The detergent isotridecyl poly-(ethylene glycol) ether (Genapol X-080) selectively solubilizes the enzyme from a prolamellar-body fraction isolated from wheat (Triticum aestivum L.). The solubilized fraction was further purified by ion-exchange chromatography. The isolated enzyme was studied by fluorescence spectroscopy at 77 K, and by CD spectroscopy. The fluorescence-emission spectra revealed that the binding properties of the substrate and co-substrate were preserved and that photo-reduction occurred. The CD spectra of PCOR were analysed for the relative amounts of the secondary structures, alpha-helix, beta-sheet, turn and random coil. The secondary structure composition was estimated to be 33% alpha-helix, 19% beta-sheet, 20% turn and 28% random coil. These values are in agreement with those predicted by the Predict Heidelberg Deutschland and self-optimized prediction method from alignments methods. The enzyme has some amino acid identity with other NADPH-binding enzymes containing the Rossmann fold. The Rossmann-fold fingerprint motif is localized in the N-terminal region and at the expected positions in the predicted secondary structure. It is suggested that PCOR is anchored to the interfacial region of the membrane by either a beta-sheet or an alpha-helical region containing tryptophan residues. A hydrophobic loop-region could also be involved in membrane anchoring.

Full Text

The Full Text of this article is available as a PDF (607.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Apel K., Santel H. J., Redlinger T. E., Falk H. The protochlorophyllide holochrome of barley (Hordeum vulgare L.). Isolation and characterization of the NADPH:protochlorophyllide oxidoreductase. Eur J Biochem. 1980 Oct;111(1):251–258. doi: 10.1111/j.1432-1033.1980.tb06100.x. [DOI] [PubMed] [Google Scholar]
  2. Armstrong G. A., Runge S., Frick G., Sperling U., Apel K. Identification of NADPH:protochlorophyllide oxidoreductases A and B: a branched pathway for light-dependent chlorophyll biosynthesis in Arabidopsis thaliana. Plant Physiol. 1995 Aug;108(4):1505–1517. doi: 10.1104/pp.108.4.1505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bartels D., Engelhardt K., Roncarati R., Schneider K., Rotter M., Salamini F. An ABA and GA modulated gene expressed in the barley embryo encodes an aldose reductase related protein. EMBO J. 1991 May;10(5):1037–1043. doi: 10.1002/j.1460-2075.1991.tb08042.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Beer N. S., Griffiths W. T. Purification of the enzyme NADPH: protochlorophyllide oxidoreductase. Biochem J. 1981 Apr 1;195(1):83–92. doi: 10.1042/bj1950083. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Benli M., Schulz R., Apel K. Effect of light on the NADPH-protochlorophyllide oxidoreductase of Arabidopsis thaliana. Plant Mol Biol. 1991 Apr;16(4):615–625. doi: 10.1007/BF00023426. [DOI] [PubMed] [Google Scholar]
  6. Creissen G., Edwards E. A., Enard C., Wellburn A., Mullineaux P. Molecular characterization of glutathione reductase cDNAs from pea (Pisum sativum L.). Plant J. 1992 Jan;2(1):129–131. [PubMed] [Google Scholar]
  7. Darrah P. M., Kay S. A., Teakle G. R., Griffiths W. T. Cloning and sequencing of protochlorophyllide reductase. Biochem J. 1990 Feb 1;265(3):789–798. doi: 10.1042/bj2650789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Forreiter C., Apel K. Light-independent and light-dependent protochlorophyllide-reducing activities and two distinct NADPH-protochlorophyllide oxidoreductase polypeptides in mountain pine (Pinus mugo). Planta. 1993;190(4):536–545. doi: 10.1007/BF00224793. [DOI] [PubMed] [Google Scholar]
  9. Geourjon C., Deléage G. SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Comput Appl Biosci. 1995 Dec;11(6):681–684. doi: 10.1093/bioinformatics/11.6.681. [DOI] [PubMed] [Google Scholar]
  10. Ghosh D., Wawrzak Z., Weeks C. M., Duax W. L., Erman M. The refined three-dimensional structure of 3 alpha,20 beta-hydroxysteroid dehydrogenase and possible roles of the residues conserved in short-chain dehydrogenases. Structure. 1994 Jul 15;2(7):629–640. doi: 10.1016/s0969-2126(00)00064-2. [DOI] [PubMed] [Google Scholar]
  11. Ghosh D., Weeks C. M., Grochulski P., Duax W. L., Erman M., Rimsay R. L., Orr J. C. Three-dimensional structure of holo 3 alpha,20 beta-hydroxysteroid dehydrogenase: a member of a short-chain dehydrogenase family. Proc Natl Acad Sci U S A. 1991 Nov 15;88(22):10064–10068. doi: 10.1073/pnas.88.22.10064. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Good A. G., Pelcher L. E., Crosby W. L. Nucleotide sequence of a complete barley alcohol dehydrogenase 1 cDNA. Nucleic Acids Res. 1988 Jul 25;16(14B):7182–7182. doi: 10.1093/nar/16.14.7182. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Graham A., Hedge P. J., Powell S. J., Riley J., Brown L., Gammack A., Carey F., Markham A. F. Nucleotide sequence of cDNA for human aldose reductase. Nucleic Acids Res. 1989 Oct 25;17(20):8368–8368. doi: 10.1093/nar/17.20.8368. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Griffiths W. T. Reconstitution of chlorophyllide formation by isolated etioplast membranes. Biochem J. 1978 Sep 15;174(3):681–692. doi: 10.1042/bj1740681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hjelmeland L. M., Chrambach A. Solubilization of functional membrane proteins. Methods Enzymol. 1984;104:305–318. doi: 10.1016/s0076-6879(84)04097-0. [DOI] [PubMed] [Google Scholar]
  16. Holtorf H., Reinbothe S., Reinbothe C., Bereza B., Apel K. Two routes of chlorophyllide synthesis that are differentially regulated by light in barley (Hordeum vulgare L.). Proc Natl Acad Sci U S A. 1995 Apr 11;92(8):3254–3258. doi: 10.1073/pnas.92.8.3254. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hunter W. N., Bailey S., Habash J., Harrop S. J., Helliwell J. R., Aboagye-Kwarteng T., Smith K., Fairlamb A. H. Active site of trypanothione reductase. A target for rational drug design. J Mol Biol. 1992 Sep 5;227(1):322–333. doi: 10.1016/0022-2836(92)90701-k. [DOI] [PubMed] [Google Scholar]
  18. Karplus P. A., Schulz G. E. Substrate binding and catalysis by glutathione reductase as derived from refined enzyme: substrate crystal structures at 2 A resolution. J Mol Biol. 1989 Nov 5;210(1):163–180. doi: 10.1016/0022-2836(89)90298-2. [DOI] [PubMed] [Google Scholar]
  19. Labesse G., Vidal-Cros A., Chomilier J., Gaudry M., Mornon J. P. Structural comparisons lead to the definition of a new superfamily of NAD(P)(H)-accepting oxidoreductases: the single-domain reductases/epimerases/dehydrogenases (the 'RED' family). Biochem J. 1994 Nov 15;304(Pt 1):95–99. doi: 10.1042/bj3040095. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  21. Manavalan P., Johnson W. C., Jr Variable selection method improves the prediction of protein secondary structure from circular dichroism spectra. Anal Biochem. 1987 Nov 15;167(1):76–85. doi: 10.1016/0003-2697(87)90135-7. [DOI] [PubMed] [Google Scholar]
  22. Oliver R. P., Griffiths W. T. Pigment-protein complexes of illuminated etiolated leaves. Plant Physiol. 1982 Oct;70(4):1019–1025. doi: 10.1104/pp.70.4.1019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Park D. H., Plapp B. V. Isoenzymes of horse liver alcohol dehydrogenase active on ethanol and steroids. cDNA cloning, expression, and comparison of active sites. J Biol Chem. 1991 Jul 15;266(20):13296–13302. [PubMed] [Google Scholar]
  24. Perham R. N., Scrutton N. S., Berry A. New enzymes for old: redesigning the coenzyme and substrate specificities of glutathione reductase. Bioessays. 1991 Oct;13(10):515–525. doi: 10.1002/bies.950131005. [DOI] [PubMed] [Google Scholar]
  25. Picot D., Loll P. J., Garavito R. M. The X-ray crystal structure of the membrane protein prostaglandin H2 synthase-1. Nature. 1994 Jan 20;367(6460):243–249. doi: 10.1038/367243a0. [DOI] [PubMed] [Google Scholar]
  26. Ramaswamy S., Eklund H., Plapp B. V. Structures of horse liver alcohol dehydrogenase complexed with NAD+ and substituted benzyl alcohols. Biochemistry. 1994 May 3;33(17):5230–5237. doi: 10.1021/bi00183a028. [DOI] [PubMed] [Google Scholar]
  27. Reithmeier R. A. Characterization and modeling of membrane proteins using sequence analysis. Curr Opin Struct Biol. 1995 Aug;5(4):491–500. doi: 10.1016/0959-440x(95)80034-4. [DOI] [PubMed] [Google Scholar]
  28. Rondeau J. M., Tête-Favier F., Podjarny A., Reymann J. M., Barth P., Biellmann J. F., Moras D. Novel NADPH-binding domain revealed by the crystal structure of aldose reductase. Nature. 1992 Jan 30;355(6359):469–472. doi: 10.1038/355469a0. [DOI] [PubMed] [Google Scholar]
  29. Rosenfeld J., Capdevielle J., Guillemot J. C., Ferrara P. In-gel digestion of proteins for internal sequence analysis after one- or two-dimensional gel electrophoresis. Anal Biochem. 1992 May 15;203(1):173–179. doi: 10.1016/0003-2697(92)90061-b. [DOI] [PubMed] [Google Scholar]
  30. Rost B., Sander C. Combining evolutionary information and neural networks to predict protein secondary structure. Proteins. 1994 May;19(1):55–72. doi: 10.1002/prot.340190108. [DOI] [PubMed] [Google Scholar]
  31. Rost B., Sander C., Schneider R. PHD--an automatic mail server for protein secondary structure prediction. Comput Appl Biosci. 1994 Feb;10(1):53–60. doi: 10.1093/bioinformatics/10.1.53. [DOI] [PubMed] [Google Scholar]
  32. Rost B., Schneider R., Sander C. Progress in protein structure prediction? Trends Biochem Sci. 1993 Apr;18(4):120–123. doi: 10.1016/0968-0004(93)90017-h. [DOI] [PubMed] [Google Scholar]
  33. Schulz R., Steinmüller K., Klaas M., Forreiter C., Rasmussen S., Hiller C., Apel K. Nucleotide sequence of a cDNA coding for the NADPH-protochlorophyllide oxidoreductase (PCR) of barley (Hordeum vulgare L.) and its expression in Escherichia coli. Mol Gen Genet. 1989 Jun;217(2-3):355–361. doi: 10.1007/BF02464904. [DOI] [PubMed] [Google Scholar]
  34. Spano A. J., He Z., Michel H., Hunt D. F., Timko M. P. Molecular cloning, nuclear gene structure, and developmental expression of NADPH: protochlorophyllide oxidoreductase in pea (Pisum sativum L.). Plant Mol Biol. 1992 Mar;18(5):967–972. doi: 10.1007/BF00019210. [DOI] [PubMed] [Google Scholar]
  35. Spano A. J., He Z., Timko M. P. NADPH: protochlorophyllide oxidoreductases in white pine (Pinus strobus) and loblolly pine (P. taeda). Evidence for light and developmental regulation of expression and conservation in gene organization and protein structure between angiosperms and gymnosperms. Mol Gen Genet. 1992 Dec;236(1):86–95. [PubMed] [Google Scholar]
  36. Suzuki J. Y., Bauer C. E. A prokaryotic origin for light-dependent chlorophyll biosynthesis of plants. Proc Natl Acad Sci U S A. 1995 Apr 25;92(9):3749–3753. doi: 10.1073/pnas.92.9.3749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Teakle G. R., Griffiths W. T. Cloning, characterization and import studies on protochlorophyllide reductase from wheat (Triticum aestivum). Biochem J. 1993 Nov 15;296(Pt 1):225–230. doi: 10.1042/bj2960225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Tutic M., Lu X. A., Schirmer R. H., Werner D. Cloning and sequencing of mammalian glutathione reductase cDNA. Eur J Biochem. 1990 Mar 30;188(3):523–528. doi: 10.1111/j.1432-1033.1990.tb15431.x. [DOI] [PubMed] [Google Scholar]
  39. Wierenga R. K., Terpstra P., Hol W. G. Prediction of the occurrence of the ADP-binding beta alpha beta-fold in proteins, using an amino acid sequence fingerprint. J Mol Biol. 1986 Jan 5;187(1):101–107. doi: 10.1016/0022-2836(86)90409-2. [DOI] [PubMed] [Google Scholar]
  40. Wilks H. M., Timko M. P. A light-dependent complementation system for analysis of NADPH:protochlorophyllide oxidoreductase: identification and mutagenesis of two conserved residues that are essential for enzyme activity. Proc Natl Acad Sci U S A. 1995 Jan 31;92(3):724–728. doi: 10.1073/pnas.92.3.724. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Wilson D. K., Bohren K. M., Gabbay K. H., Quiocho F. A. An unlikely sugar substrate site in the 1.65 A structure of the human aldose reductase holoenzyme implicated in diabetic complications. Science. 1992 Jul 3;257(5066):81–84. doi: 10.1126/science.1621098. [DOI] [PubMed] [Google Scholar]
  42. Woolf T. B., Roux B. Molecular dynamics simulation of the gramicidin channel in a phospholipid bilayer. Proc Natl Acad Sci U S A. 1994 Nov 22;91(24):11631–11635. doi: 10.1073/pnas.91.24.11631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Yang J. T., Wu C. S., Martinez H. M. Calculation of protein conformation from circular dichroism. Methods Enzymol. 1986;130:208–269. doi: 10.1016/0076-6879(86)30013-2. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES